深度学习之图像分类(十二)--MobileNetV3 网络结构
深度学习之图像分类(十二)MobileNetV3 网络结构目录深度学习之图像分类(十二)MobileNetV3 网络结构1. 前言2. 更新 BlocK (bneck)3. 重新设计激活函数4. 重新设计耗时层结构5. MobileNetV3 网络结构6. NAS7. 代码本节学习 MobileNetV3 网络结构。学习视频源于 Bilibili。1. 前言MobileNetV3 是由 googl
深度学习之图像分类(十二)MobileNetV3 网络结构
目录
本节学习 MobileNetV3 网络结构。学习视频源于 Bilibili,感谢霹雳吧啦Wz,建议大家去看视频学习哦。
1. 前言
MobileNetV3 是由 google 团队在 2019 年提出的,其原始论文为 Searching for MobileNetV3。MobileNetV3 有以下三点值得注意:
- 更新 Block (bneck)
- 使用 NAS 搜索参数 (Neural Architecture Search)
- 重新设计耗时层结构
相比于 MobileNetV2 版本而言,具体 MobileNetV3 在性能上有哪些提升呢?在原论文摘要中,作者提到在 ImageNet 分类任务中正确率上升了 3.2%,计算延时还降低了 20%。
2. 更新 BlocK (bneck)
首先我们来看一下在 MobileNetV3 中 block 如何被更新的。乍一看没有太大的区别,最显眼的部分就是加入了 SE 模块,即注意力机制;其次是更新了激活函数。
这里的注意力机制想法非常简单,即针对每一个 channel 进行池化处理,就得到了 channel 个数个元素,通过两个全连接层,得到输出的这个向量。值得注意的是,第一个全连接层的节点个数等于 channel 个数的 1/4,然后第二个全连接层的节点就和 channel 保持一致。这个得到的输出就相当于对原始的特征矩阵的每个 channel 分析出来了其重要程度,越重要的赋予越大的权重,越不重要的就赋予越小的权重。我们用下图来进行理解,首先采用平均池化将每一个 channel 变为一个值,然后经过两个全连接层之后得到通道权重的输出,值得注意的是第二个全连接层使用 Hard-Sigmoid 激活函数。然后将通道的权重乘回原来的特征矩阵就得到了新的特征矩阵。
在 MobileNetV3 中 block 的激活函数标注的是 NL,表示的是非线性激活函数的意思。因为在不同层用的不一样,所以这里标注的是 NL。一样的,最后 1 × 1 1 \times 1 1×1 卷积后使用线性激活函数(或者说就是没有激活函数)。
3. 重新设计激活函数
我们来重点讲一讲重新设计激活函数这个部分,之前在 MobileNetV2 都是使用 ReLU6 激活函数。现在比较常用的是 swish 激活函数,即 x 乘上 sigmoid 激活函数。使用 swish 激活函数确实能够提高网络的准确率,但是呢它也有一些问题。首先就是其计算和求导时间复杂,光一个 sigmoid 进行计算和求导就比较头疼了。第二个就是对量化过程非常不友好,特别是对于移动端的设备,为了加速一般都会进行量化操作。为此,作者提出了一个叫做 h-swish 的激活函数。
在说 h-swish 之前,首先要说说 h-sigmoid 激活函数,它其实是 ReLU6 ( x + 3 ) / 6 \text{ReLU6}(x+3)/6 ReLU6(x+3)/6。可以看出来它和 sigmoid 非常接近,但是计算公式和求导简单太多了。由于 swish 是 x 乘上 sigmoid,自然而言得到 h-swish 是 x 乘上 h-sigmoid。可以看到 swish 激活函数的曲线和 h-swish 激活函数的曲线还是非常相似的。作者在原论文中提到,经过将 swish 激活函数替换为 h-swish,sigmoid 激活函数替换为 h-sigmoid 激活函数,对网络的推理速度是有帮助的,并且对量化过程也是很友好的。注意,h-swish 实现虽然说比 swish 快,但和 ReLU 比还是慢不少。
4. 重新设计耗时层结构
关于重新设计耗时层结构,原论文主要讲了两个部分。首先是针对第一层卷积层,因为卷积核比较大,所以将第一层卷积核个数从 32 减少到 16。作者通过实验发现,这样做其实准确率并没有改变,但是参数量小了呀,有节省大概 2ms 的时间!
第二个则是精简 Last Stage。作者在使用过程中发现原始的最后结构比较耗时。精简之后第一个卷积没有变化,紧接着直接进行平均池化操作,再跟两个卷积层。和原来比起来明显少了很多层结构。作者通过实验发现这样做正确率基本没有损失,但是速度快了很多,节省了 7ms 的推理时间,别看 7ms 少,它占据了全部推理时间的 11%。
5. MobileNetV3 网络结构
下表给出的是 MobileNetV3-large 的网络配置。Input 表示输入当前层的特征矩阵的 shape,#out 代表的就是输出的通道大小。exp size 表示 bneck 中第一个升维的 1 × 1 1 \times 1 1×1 卷积输出的维度,SE 表示是否使用注意力机制,NL 表示当前使用的非线性激活函数,s 为步距 stride。bneck 后面跟的就是 DW 卷积的卷积核大小。注意最后有一个 NBN 表示分类器部分的卷积不会去使用 BN 层。
还需要注意的是第一个 bneck 结构,它的 exp size 和输出维度是一样的,也就是第一个 1 × 1 1 \times 1 1×1 卷积并没有做升维处理,所以在 pytorch 和 tensorflow 的官方实现中,第一个 bneck 结构中就没有使用 1 × 1 1 \times 1 1×1 卷积了,直接就是 DW 卷积了。
与 MobileNetV2 一致,只有当 stride = 1 且 input channel = output channel 的时候才有 shortcut 连接。
至于 MobileNetV3-small 的网络配置见下表,这里就不做过多赘述了。
6. NAS
虽然 MobileNetV3 结构我们已经知道了,但是 如何设计出的这个网络,如何进行网络结构的搜索? 结合论文标题 “Searching for” 我们还是有必要简单提一下。之所以简单说,是因为我现在也不太懂 。总体而言,先使用 NAS 算法,优化每一个 block,得到大体的网络结构,然后使用 NetAdapt 算法来确定每个 filter 的 channel 的数量。由于small model 的精度以及耗时影响相对较大,MobileNetV3-large 和 MobileNetV3-small 是分别使用 NAS 设计的。具体过程如下:
- 先用 NAS 找到一个可用的结构 A
- 在 A 的基础上生成一系类的候选结构,并且这些候选结构消耗在一点点减少,即穷举子结构
- 对于每个候选结构,使用前一个模型进行初始化,(前一个模型没有的参数随机初始化就行),finetune T 个 epoch,得到一个大致的精度
- 在这些候选结构中,找到最好的
- 反复迭代,直到到达结束条件,找到最合适的结果
候选子结构包括:降低 expansion layer 的升维 size 以及减少 projection layer 的降维 size。
关于网络架构搜索 (NAS) 并不是 MobileNetV3 这篇文章首先提出来的,而是在 18 年同是谷歌的一篇文章 MnasNet: Platform-Aware Neural Architecture Search for Mobile 提出来的,有兴趣的可以看一看。
7. 代码
MobileNetV3 实现代码如下所示:
from typing import Callable, List, Optional
import torch
from torch import nn, Tensor
from torch.nn import functional as F
from functools import partial
def _make_divisible(ch, divisor=8, min_ch=None):
"""
This function is taken from the original tf repo.
It ensures that all layers have a channel number that is divisible by 8
It can be seen here:
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
"""
if min_ch is None:
min_ch = divisor
new_ch = max(min_ch, int(ch + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_ch < 0.9 * ch:
new_ch += divisor
return new_ch
class ConvBNActivation(nn.Sequential):
def __init__(self,
in_planes: int,
out_planes: int,
kernel_size: int = 3,
stride: int = 1,
groups: int = 1,
norm_layer: Optional[Callable[..., nn.Module]] = None,
activation_layer: Optional[Callable[..., nn.Module]] = None):
padding = (kernel_size - 1) // 2
if norm_layer is None:
norm_layer = nn.BatchNorm2d
if activation_layer is None:
activation_layer = nn.ReLU6
super(ConvBNActivation, self).__init__(nn.Conv2d(in_channels=in_planes,
out_channels=out_planes,
kernel_size=kernel_size,
stride=stride,
padding=padding,
groups=groups,
bias=False),
norm_layer(out_planes),
activation_layer(inplace=True))
class SqueezeExcitation(nn.Module):
def __init__(self, input_c: int, squeeze_factor: int = 4):
super(SqueezeExcitation, self).__init__()
squeeze_c = _make_divisible(input_c // squeeze_factor, 8)
self.fc1 = nn.Conv2d(input_c, squeeze_c, 1)
self.fc2 = nn.Conv2d(squeeze_c, input_c, 1)
def forward(self, x: Tensor) -> Tensor:
scale = F.adaptive_avg_pool2d(x, output_size=(1, 1))
scale = self.fc1(scale)
scale = F.relu(scale, inplace=True)
scale = self.fc2(scale)
scale = F.hardsigmoid(scale, inplace=True)
return scale * x
class InvertedResidualConfig:
def __init__(self,
input_c: int,
kernel: int,
expanded_c: int,
out_c: int,
use_se: bool,
activation: str,
stride: int,
width_multi: float):
self.input_c = self.adjust_channels(input_c, width_multi)
self.kernel = kernel
self.expanded_c = self.adjust_channels(expanded_c, width_multi)
self.out_c = self.adjust_channels(out_c, width_multi)
self.use_se = use_se
self.use_hs = activation == "HS" # whether using h-swish activation
self.stride = stride
@staticmethod
def adjust_channels(channels: int, width_multi: float):
return _make_divisible(channels * width_multi, 8)
class InvertedResidual(nn.Module):
def __init__(self,
cnf: InvertedResidualConfig,
norm_layer: Callable[..., nn.Module]):
super(InvertedResidual, self).__init__()
if cnf.stride not in [1, 2]:
raise ValueError("illegal stride value.")
self.use_res_connect = (cnf.stride == 1 and cnf.input_c == cnf.out_c)
layers: List[nn.Module] = []
activation_layer = nn.Hardswish if cnf.use_hs else nn.ReLU
# expand
if cnf.expanded_c != cnf.input_c:
layers.append(ConvBNActivation(cnf.input_c,
cnf.expanded_c,
kernel_size=1,
norm_layer=norm_layer,
activation_layer=activation_layer))
# depthwise
layers.append(ConvBNActivation(cnf.expanded_c,
cnf.expanded_c,
kernel_size=cnf.kernel,
stride=cnf.stride,
groups=cnf.expanded_c,
norm_layer=norm_layer,
activation_layer=activation_layer))
if cnf.use_se:
layers.append(SqueezeExcitation(cnf.expanded_c))
# project
layers.append(ConvBNActivation(cnf.expanded_c,
cnf.out_c,
kernel_size=1,
norm_layer=norm_layer,
activation_layer=nn.Identity))
self.block = nn.Sequential(*layers)
self.out_channels = cnf.out_c
self.is_strided = cnf.stride > 1
def forward(self, x: Tensor) -> Tensor:
result = self.block(x)
if self.use_res_connect:
result += x
return result
class MobileNetV3(nn.Module):
def __init__(self,
inverted_residual_setting: List[InvertedResidualConfig],
last_channel: int,
num_classes: int = 1000,
block: Optional[Callable[..., nn.Module]] = None,
norm_layer: Optional[Callable[..., nn.Module]] = None):
super(MobileNetV3, self).__init__()
if not inverted_residual_setting:
raise ValueError("The inverted_residual_setting should not be empty.")
elif not (isinstance(inverted_residual_setting, List) and
all([isinstance(s, InvertedResidualConfig) for s in inverted_residual_setting])):
raise TypeError("The inverted_residual_setting should be List[InvertedResidualConfig]")
if block is None:
block = InvertedResidual
if norm_layer is None:
norm_layer = partial(nn.BatchNorm2d, eps=0.001, momentum=0.01)
layers: List[nn.Module] = []
# building first layer
firstconv_output_c = inverted_residual_setting[0].input_c
layers.append(ConvBNActivation(3,
firstconv_output_c,
kernel_size=3,
stride=2,
norm_layer=norm_layer,
activation_layer=nn.Hardswish))
# building inverted residual blocks
for cnf in inverted_residual_setting:
layers.append(block(cnf, norm_layer))
# building last several layers
lastconv_input_c = inverted_residual_setting[-1].out_c
lastconv_output_c = 6 * lastconv_input_c
layers.append(ConvBNActivation(lastconv_input_c,
lastconv_output_c,
kernel_size=1,
norm_layer=norm_layer,
activation_layer=nn.Hardswish))
self.features = nn.Sequential(*layers)
self.avgpool = nn.AdaptiveAvgPool2d(1)
self.classifier = nn.Sequential(nn.Linear(lastconv_output_c, last_channel),
nn.Hardswish(inplace=True),
nn.Dropout(p=0.2, inplace=True),
nn.Linear(last_channel, num_classes))
# initial weights
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode="fan_out")
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.ones_(m.weight)
nn.init.zeros_(m.bias)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
nn.init.zeros_(m.bias)
def _forward_impl(self, x: Tensor) -> Tensor:
x = self.features(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.classifier(x)
return x
def forward(self, x: Tensor) -> Tensor:
return self._forward_impl(x)
def mobilenet_v3_large(num_classes: int = 1000,
reduced_tail: bool = False) -> MobileNetV3:
"""
Constructs a large MobileNetV3 architecture from
"Searching for MobileNetV3" <https://arxiv.org/abs/1905.02244>.
weights_link:
https://download.pytorch.org/models/mobilenet_v3_large-8738ca79.pth
Args:
num_classes (int): number of classes
reduced_tail (bool): If True, reduces the channel counts of all feature layers
between C4 and C5 by 2. It is used to reduce the channel redundancy in the
backbone for Detection and Segmentation.
"""
width_multi = 1.0
bneck_conf = partial(InvertedResidualConfig, width_multi=width_multi)
adjust_channels = partial(InvertedResidualConfig.adjust_channels, width_multi=width_multi)
reduce_divider = 2 if reduced_tail else 1
inverted_residual_setting = [
# input_c, kernel, expanded_c, out_c, use_se, activation, stride
bneck_conf(16, 3, 16, 16, False, "RE", 1),
bneck_conf(16, 3, 64, 24, False, "RE", 2), # C1
bneck_conf(24, 3, 72, 24, False, "RE", 1),
bneck_conf(24, 5, 72, 40, True, "RE", 2), # C2
bneck_conf(40, 5, 120, 40, True, "RE", 1),
bneck_conf(40, 5, 120, 40, True, "RE", 1),
bneck_conf(40, 3, 240, 80, False, "HS", 2), # C3
bneck_conf(80, 3, 200, 80, False, "HS", 1),
bneck_conf(80, 3, 184, 80, False, "HS", 1),
bneck_conf(80, 3, 184, 80, False, "HS", 1),
bneck_conf(80, 3, 480, 112, True, "HS", 1),
bneck_conf(112, 3, 672, 112, True, "HS", 1),
bneck_conf(112, 5, 672, 160 // reduce_divider, True, "HS", 2), # C4
bneck_conf(160 // reduce_divider, 5, 960 // reduce_divider, 160 // reduce_divider, True, "HS", 1),
bneck_conf(160 // reduce_divider, 5, 960 // reduce_divider, 160 // reduce_divider, True, "HS", 1),
]
last_channel = adjust_channels(1280 // reduce_divider) # C5
return MobileNetV3(inverted_residual_setting=inverted_residual_setting,
last_channel=last_channel,
num_classes=num_classes)
def mobilenet_v3_small(num_classes: int = 1000,
reduced_tail: bool = False) -> MobileNetV3:
"""
Constructs a large MobileNetV3 architecture from
"Searching for MobileNetV3" <https://arxiv.org/abs/1905.02244>.
weights_link:
https://download.pytorch.org/models/mobilenet_v3_small-047dcff4.pth
Args:
num_classes (int): number of classes
reduced_tail (bool): If True, reduces the channel counts of all feature layers
between C4 and C5 by 2. It is used to reduce the channel redundancy in the
backbone for Detection and Segmentation.
"""
width_multi = 1.0
bneck_conf = partial(InvertedResidualConfig, width_multi=width_multi)
adjust_channels = partial(InvertedResidualConfig.adjust_channels, width_multi=width_multi)
reduce_divider = 2 if reduced_tail else 1
inverted_residual_setting = [
# input_c, kernel, expanded_c, out_c, use_se, activation, stride
bneck_conf(16, 3, 16, 16, True, "RE", 2), # C1
bneck_conf(16, 3, 72, 24, False, "RE", 2), # C2
bneck_conf(24, 3, 88, 24, False, "RE", 1),
bneck_conf(24, 5, 96, 40, True, "HS", 2), # C3
bneck_conf(40, 5, 240, 40, True, "HS", 1),
bneck_conf(40, 5, 240, 40, True, "HS", 1),
bneck_conf(40, 5, 120, 48, True, "HS", 1),
bneck_conf(48, 5, 144, 48, True, "HS", 1),
bneck_conf(48, 5, 288, 96 // reduce_divider, True, "HS", 2), # C4
bneck_conf(96 // reduce_divider, 5, 576 // reduce_divider, 96 // reduce_divider, True, "HS", 1),
bneck_conf(96 // reduce_divider, 5, 576 // reduce_divider, 96 // reduce_divider, True, "HS", 1)
]
last_channel = adjust_channels(1024 // reduce_divider) # C5
return MobileNetV3(inverted_residual_setting=inverted_residual_setting,
last_channel=last_channel,
num_classes=num_classes)
更多推荐
所有评论(0)