数据库连接池到底应该设置多大?响应时间从 100ms 优化到 3ms!(1)
说句实话,如果一个打工人不想提升自己,那便没有工作的意义,毕竟大家也没有到养老的年龄。当你的技术在一步步贴近阿里p7水平的时候,毫无疑问你的薪资肯定会涨,同时你能学到更多更深的技术,交结到更厉害的大牛。推荐一份Java架构之路必备的学习笔记,内容相当全面!!!成年人的世界没有容易二字,前段时间刷抖音看到一个程序员连着加班两星期到半夜2点的视频。在这个行业若想要拿高薪除了提高硬实力别无他法。你知道吗
每个请求要在连接池队列里等待33ms,获得连接后执行SQL需要77ms
此时数据库的等待事件是这个熊样的:
各种buffer busy waits,数据库CPU在95%左右(这张图里没截到CPU)
接下来,把中间件连接池减到1024(并发什么的都不变),性能数据变成了这样:
获取链接等待时长没怎么变,但是执行SQL的耗时减少了。
下面这张图,上半部分是wait,下半部分是吞吐量
能看到,中间件连接池从2048减半之后,吐吞量没变,但wait事件减少了一半。
接下来,把数据库连接池减到96,并发线程数仍然是9600不变。
队列平均等待1ms,执行SQL平均耗时2ms。
wait事件几乎没了,吞吐量上升。
没有调整任何其他东西,仅仅只是缩小了中间件层的数据库连接池,就把请求响应时间从100ms左右缩短到了3ms。
But why?
为什么nginx只用4个线程发挥出的性能就大大超越了100个进程的Apache HTTPD?回想一下计算机科学的基础知识,答案其实是很明显的。
即使是单核CPU的计算机也能“同时”运行数百个线程。但我们都[应该]知道这只不过是操作系统用时间分片玩的一个小把戏。一颗CPU核心同一时刻只能执行一个线程,然后操作系统切换上下文,核心开始执行另一个线程的代码,以此类推。给定一颗CPU核心,其顺序执行A和B永远比通过时间分片“同时”执行A和B要快,这是一条计算机科学的基本法则。一旦线程的数量超过了CPU核心的数量,再增加线程数系统就只会更慢,而不是更快。
这几乎就是真理了……
有限的资源
上面的说法只能说是接近真理,但还并没有这么简单,有一些其他的因素需要加入。当我们寻找数据库的性能瓶颈时,总是可以将其归为三类:CPU、磁盘、网络。把_内存_加进来也没有错,但比起_磁盘_和_网络_,内存的带宽要高出好几个数量级,所以就先不加了。
如果我们无视_磁盘_和_网络_,那么结论就非常简单。在一个8核的服务器上,设定连接/线程数为8能够提供最优的性能,再增加连接数就会因上下文切换的损耗导致性能下降。数据库通常把数据存储在磁盘上,磁盘又通常是由一些旋转着的金属碟片和一个装在步进马达上的读写头组成的。读/写头同一时刻只能出现在一个地方,然后它必须“寻址”到另外一个位置来执行另一次读写操作。所以就有了寻址的耗时,此外还有旋回耗时,读写头需要等待碟片上的目标数据“旋转到位”才能进行操作。使用缓存当然是能够提升性能的,但上述原理仍然成立。
在这一时间段(即"I/O等待")内,线程是在“阻塞”着等待磁盘,此时操作系统可以将那个空闲的CPU核心用于服务其他线程。所以,由于线程总是在I/O上阻塞,我们可以让线程/连接数比CPU核心多一些,这样能够在同样的时间内完成更多的工作。
那么应该多多少呢?这要取决于_磁盘_。较新型的SSD不需要寻址,也没有旋转的碟片。可别想当然地认为“SSD速度更快,所以我们应该增加线程数”,恰恰相反,无需寻址和没有旋回耗时意味着更少的阻塞,所以更少的线程[更接近于CPU核心数]会发挥出更高的性能。只有当阻塞创造了更多的执行机会时,更多的线程数才能发挥出更好的性能。
_网络_和_磁盘_类似。通过以太网接口读写数据时也会形成阻塞,10G带宽会比1G带宽的阻塞少一些,1G带宽又会比100M带宽的阻塞少一些。不过网络通常是放在第三位考虑的,有些人会在性能计算中忽略它们。
上图是PostgreSQL的benchmark数据,可以看到TPS增长率从50个连接数开始变缓。在上面Oracle的视频中,他们把连接数从2048降到了96,实际上96都太高了,除非服务器有16或32颗核心。
计算公式
下面的公式是由PostgreSQL提供的,不过我们认为可以广泛地应用于大多数数据库产品。你应该模拟预期的访问量,并从这一公式开始测试你的应用,寻找最合适的连接数值。
连接数 = ((核心数 * 2) + 有效磁盘数)
核心数不应包含超线程(hyper thread),即使打开了hyperthreading也是。如果活跃数据全部被缓存了,那么有效磁盘数是0,随着缓存命中率的下降,有效磁盘数逐渐趋近于实际的磁盘数。这一公式作用于SSD时的效果如何尚未有分析。
按这个公式,你的4核i7数据库服务器的连接池大小应该为((4 * 2) + 1) = 9。取个整就算是是10吧。是不是觉得太小了?跑个性能测试试一下,我们保证它能轻松搞定3000用户以6000TPS的速率并发执行简单查询的场景。如果连接池大小超过10,你会看到响应时长开始增加,TPS开始下降。
笔者注:
这一公式其实不仅适用于数据库连接池的计算,大部分涉及计算和I/O的程序,线程数的设置都可以参考这一公式。我之前在对一个使用Netty编写的消息收发服务进行压力测试时,最终测出的最佳线程数就刚好是CPU核心数的一倍。
公理:你需要一个小连接池,和一个充满了等待连接的线程的队列
如果你有10000个并发用户,设置一个10000的连接池基本等于失了智。1000仍然很恐怖。即是100也太多了。你需要一个10来个连接的小连接池,然后让剩下的业务线程都在队列里等待。连接池中的连接数量应该等于你的数据库能够有效同时进行的查询任务数(通常不会高于2*CPU核心数)。
我们经常见到一些小规模的web应用,应付着大约十来个的并发用户,却使用着一个100连接数的连接池。这会对你的数据库造成极其不必要的负担。
请注意
连接池的大小最终与系统特性相关。
比如一个混合了长事务和短事务的系统,通常是任何连接池都难以进行调优的。最好的办法是创建两个连接池,一个服务于长事务,一个服务于短事务。
再例如一个系统执行一个任务队列,只允许一定数量的任务同时执行,此时并发任务数应该去适应连接池连接数,而不是反过来。
作者:kelgon
jianshu.com/p/a8f653fc0c54
往期精选 点击标题可跳转
IntelliJ IDEA 中使用热部署 JRebel 神器,开发效率提升一倍!
自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。
深知大多数Java工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年Java开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Java开发知识点,真正体系化!
由于文件比较大,这里只是将部分目录截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且会持续更新!
如果你觉得这些内容对你有帮助,可以扫码获取!!(备注Java获取)
最后如何让自己一步步成为技术专家
说句实话,如果一个打工人不想提升自己,那便没有工作的意义,毕竟大家也没有到养老的年龄。
当你的技术在一步步贴近阿里p7水平的时候,毫无疑问你的薪资肯定会涨,同时你能学到更多更深的技术,交结到更厉害的大牛。
推荐一份Java架构之路必备的学习笔记,内容相当全面!!!
成年人的世界没有容易二字,前段时间刷抖音看到一个程序员连着加班两星期到半夜2点的视频。在这个行业若想要拿高薪除了提高硬实力别无他法。
你知道吗?现在有的应届生实习薪资都已经赶超开发5年的程序员了,实习薪资26K,30K,你没有紧迫感吗?做了这么多年还不如一个应届生,真的非常尴尬!
进了这个行业就不要把没时间学习当借口,这个行业就是要不断学习,不然就只能被裁员。所以,抓紧时间投资自己,多学点技术,眼前困难,往后轻松!
【关注】+【转发】+【点赞】支持我!创作不易!
《互联网大厂面试真题解析、进阶开发核心学习笔记、全套讲解视频、实战项目源码讲义》点击传送门即可获取!
进了这个行业就不要把没时间学习当借口,这个行业就是要不断学习,不然就只能被裁员。所以,抓紧时间投资自己,多学点技术,眼前困难,往后轻松!
【关注】+【转发】+【点赞】支持我!创作不易!
《互联网大厂面试真题解析、进阶开发核心学习笔记、全套讲解视频、实战项目源码讲义》点击传送门即可获取!
更多推荐
所有评论(0)