大数据最全下一代实时数据库:Apache Doris 【七】数据模型
当我们导入数据时,对于 Key 列相同的行会聚合成一行,而 Value 列会按照设置的 AggregationType 进行聚合。该阶段, BE 会对已导入的不同批次的 数据进行进一步的聚合。可以看到,用户 10004 的已有数据和新导入的数据发生了聚合。➢ REPLACE:替代, 下一批数据中的 Value 会替换之前导入过的行中的 Value。每一行的 Key 都不完全相同,那么即使在聚合模型
文章目录
3.5 数据模型
Doris 的数据模型主要分为 3 类:Aggregate 、Uniq 、Duplicate
3.5.1 Aggregate 模型
表中的列按照是否设置了 AggregationType,分为 Key (维度列) 和 Value (指标列) 。 没有设置 AggregationType 的称为 Key,设置了 AggregationType 的称为 Value。
当我们导入数据时,对于 Key 列相同的行会聚合成一行,而 Value 列会按照设置的 AggregationType 进行聚合。AggregationType 目前有以下四种聚合方式:
➢ SUM:求和, 多行的 Value 进行累加。
➢ REPLACE:替代, 下一批数据中的 Value 会替换之前导入过的行中的 Value。
REPLACE_IF_NOT_NULL :当遇到 null 值则不更新。
➢ MAX:保留最大值。
➢ MIN:保留最小值。
数据的聚合,在 Doris 中有如下三个阶段发生:
(1)每一批次数据导入的 ETL 阶段。该阶段会在每一批次导入的数据内部进行聚合。
(2) 底层 BE 进行数据 Compaction 的阶段。该阶段, BE 会对已导入的不同批次的 数据进行进一步的聚合。
(3) 数据查询阶段。在数据查询时, 对于查询涉及到的数据, 会进行对应的聚合。
数据在不同时间,可能聚合的程度不一致。比如一批数据刚导入时,可能还未与之前已 存在的数据进行聚合。但是对于用户而言,用户只能查询到聚合后的数据。即不同的聚合程 度对于用户查询而言是透明的。用户需始终认为数据以最终的完成的聚合程度存在,而不应 假设某些聚合还未发生。(可参阅聚合模型的局限性一节获得更多详情。)
3.5.1.1 示例一:导入数据聚合
1)建表
CREATE TABLE IF NOT EXISTS test_db.example_site_visit
(
`user_id` LARGEINT NOT NULL COMMENT "用户 id",
`date` DATE NOT NULL COMMENT "数据灌入日期时间",
`city` VARCHAR(20) COMMENT "用户所在城市",
`age` SMALLINT COMMENT "用户年龄",
`sex` TINYINT COMMENT "用户性别",
`last_visit_date` DATETIME REPLACE DEFAULT "1970-01-01
00:00:00" COMMENT "用户最后一次访问时间",
`last_visit_date_not_null` DATETIME REPLACE_IF_NOT_NULL DEFAULT
"1970-01-01 00:00:00" COMMENT "用户最后一次访问时间",
`cost` BIGINT SUM DEFAULT "0" COMMENT "用户总消费",
`max_dwell_time` INT MAX DEFAULT "0" COMMENT "用户最大停留时间",
`min_dwell_time` INT MIN DEFAULT "99999" COMMENT "用户最小停留时
间"
)
AGGREGATE KEY(`user_id`, `date`, `city`, `age`, `sex`)
DISTRIBUTED BY HASH(`user_id`) BUCKETS 10;
2)插入数据
insert into test_db.example_site_visit values\
(10000,'2017-10-01','北京',20,0,'2017-10-01 06:00:00','2017-10-01
06:00:00',20,10,10),\
(10000,'2017-10-01','北京',20,0,'2017-10-01 07:00:00','2017-10-01
07:00:00',15,2,2),\
(10001,'2017-10-01','北京',30,1,'2017-10-01 17:05:45','2017-10-01
07:00:00',2,22,22),\
(10002,'2017-10-02','
上 海
',20,1,'2017-10-02
12:59:12',null,200,5,5),\
(10003,'2017-10-02','广州',32,0,'2017-10-02 11:20:00','2017-10-02
11:20:00',30,11,11),\
(10004,'2017-10-01','深圳',35,0,'2017-10-01 10:00:15','2017-10-01
10:00:15',100,3,3),\
(10004,'2017-10-03','深圳',35,0,'2017-10-03 10:20:22','2017-10-03
10:20:22',11,6,6);
注意: Insert into 单条数据这种操作在 Doris 里只能演示不能在生产使用, 会引发写阻 塞。
3)查看表
select * from test_db.example_site_visit;
可以看到,用户 10000 只剩下了一行聚合后的数据。而其余用户的数据和原始数据保 持一致。经过聚合,Doris 中最终只会存储聚合后的数据。换句话说, 即明细数据会丢失, 用户不能够再查询到聚合前的明细数据了。
3.5.1.2 示例二:保留明细数据
1)建表
CREATE TABLE IF NOT EXISTS test_db.example_site_visit2
(
`user_id` LARGEINT NOT NULL COMMENT "用户 id",
`date` DATE NOT NULL COMMENT "数据灌入日期时间",
`timestamp` DATETIME COMMENT "数据灌入时间,精确到秒",
`city` VARCHAR(20) COMMENT "用户所在城市",
`age` SMALLINT COMMENT "用户年龄",
`sex` TINYINT COMMENT "用户性别",
`last_visit_date` DATETIME REPLACE DEFAULT "1970-01-01
00:00:00" COMMENT "用户最后一次访问时间",
`cost` BIGINT SUM DEFAULT "0" COMMENT "用户总消费",
`max_dwell_time` INT MAX DEFAULT "0" COMMENT "用户最大停留时间",
`min_dwell_time` INT MIN DEFAULT "99999" COMMENT "用户最小停留时
间"
)
AGGREGATE KEY(`user_id`, `date`, `timestamp`, `city`, `age`, `sex`)
DISTRIBUTED BY HASH(`user_id`) BUCKETS 10;
2)插入数据
insert into test_db.example_site_visit2 values(10000,'2017-10-
01','2017-10-01 08:00:05',' 北 京 ',20,0,'2017-10-01
06:00:00',20,10,10),\
(10000,'2017-10-01','2017-10-01 09:00:05','北京',20,0,'2017-10-01
07:00:00',15,2,2),\
(10001,'2017-10-01','2017-10-01 18:12:10','北京',30,1,'2017-10-01
17:05:45',2,22,22),\
(10002,'2017-10-02','2017-10-02 13:10:00','上海',20,1,'2017-10-02
12:59:12',200,5,5),\
(10003,'2017-10-02','2017-10-02 13:15:00','广州',32,0,'2017-10-02
11:20:00',30,11,11),\
(10004,'2017-10-01','2017-10-01 12:12:48','深圳',35,0,'2017-10-01
10:00:15',100,3,3),\
(10004,'2017-10-03','2017-10-03 12:38:20','深圳',35,0,'2017-10-03
10:20:22',11,6,6);
3)查看表
select * from test_db.example_site_visit2;
存储的数据,和导入数据完全一样, 没有发生任何聚合。这是因为,这批数据中, 因为 加入了 timestamp 列,所有行的 Key 都不完全相同。也就是说,只要保证导入的数据中,
每一行的 Key 都不完全相同,那么即使在聚合模型下,Doris 也可以保存完整的明细数据。
3.5.1.3 示例三:导入数据与已有数据聚合
1)往实例一中继续插入数据
insert into test_db.example_site_visit values(10004,'2017-10-03','
深圳',35,0,'2017-10-03 11:22:00',null,44,19,19),\
(10005,'2017-10-03','长沙',29,1,'2017-10-03 18:11:02','2017-10-03
18:11:02',3,1,1);
2)查看表
select * from test_db.example_site_visit;
可以看到,用户 10004 的已有数据和新导入的数据发生了聚合。同时新增了 10005 用 户的数据。
3.5.2 Uniq 模型
在某些多维分析场景下,用户更关注的是如何保证 Key 的唯一性,即如何获得 Primary Key 唯一性约束。因此,我们引入了 Uniq 的数据模型。该模型本质上是聚合模型的一个特 例,也是一种简化的表结构表示方式。
1)建表
CREATE TABLE IF NOT EXISTS test_db.user
(
`user_id` LARGEINT NOT NULL COMMENT "用户 id",
`username` VARCHAR(50) NOT NULL COMMENT "用户昵称",
`city` VARCHAR(20) COMMENT "用户所在城市",
`age` SMALLINT COMMENT "用户年龄",
`sex` TINYINT COMMENT "用户性别",
`phone` LARGEINT COMMENT "用户电话",
`address` VARCHAR(500) COMMENT "用户地址",
`register_time` DATETIME COMMENT "用户注册时间"
)
UNIQUE KEY(`user_id`, `username`)
DISTRIBUTED BY HASH(`user_id`) BUCKETS 10;
2)插入数据
insert into test_db.user values\
(10000,'wuyanzu',' 北 京 ',18,0,12345678910,' 北 京 朝 阳 区 ','2017-10-01
07:00:00'),\
(10000,'wuyanzu',' 北 京 ',19,0,12345678910,' 北 京 朝 阳 区 ','2017-10-01
07:00:00'),\
(10000,'zhangsan','北京',20,0,12345678910,'北京海淀区','2017-11-15
06:10:20');
3)查询表
select * from test_db.user;
Uniq 模型完全可以用聚合模型中的 REPLACE 方式替代。其内部的实现方式和数据存 储方式也完全一样。
3.5.3 Duplicate 模型
在某些多维分析场景下,数据既没有主键,也没有聚合需求。 Duplicate 数据模型可以 满足这类需求。数据完全按照导入文件中的数据进行存储,不会有任何聚合。即使两行数据 完全相同, 也都会保留。 而在建表语句中指定的 DUPLICATE KEY,只是用来指明底层数 据按照那些列进行排序。
1)建表
CREATE TABLE IF NOT EXISTS test_db.example_log
(
`timestamp` DATETIME NOT NULL COMMENT "日志时间",
`type` INT NOT NULL COMMENT "日志类型",
`error_code` INT COMMENT "错误码",
![img](https://img-blog.csdnimg.cn/img_convert/de2c6de16d8531f31d510c155a7cb515.png)
![img](https://img-blog.csdnimg.cn/img_convert/56cde8f4a72ea27dc729685e09253f67.png)
![img](https://img-blog.csdnimg.cn/img_convert/4211f27d194a7a4d955a7c00462f0ee7.png)
**既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!**
**由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新**
**[需要这份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/topics/618545628)**
ZOioY-1714773898822)]
[外链图片转存中...(img-KX8Cfn3I-1714773898822)]
[外链图片转存中...(img-XYWJr3tr-1714773898823)]
**既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!**
**由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新**
**[需要这份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/topics/618545628)**
更多推荐
所有评论(0)