基于python的卷积神经网络人脸识别算法设计
目录1 研究背景12 卷积神经网络32.1 卷积神经网络模型32.2 局部感知域42.3 权值共享42.4 池化53 人脸识别系统63.1 图像采集63.2 人脸检测73.3 数据整理73.4 卷积神经网络的构建和训练83.5 人脸实时识别84 实验验证与结果分析84.1 数据来源84.2 代码实现84.3 实验结果分析95 结语9参考文献:91研究背景随着计算机视觉的相关理论与应用研究的快速发展
目录
1 研究背景 1
2 卷积神经网络 3
2.1 卷积神经网络模型 3
2.2 局部感知域 4
2.3 权值共享 4
2.4 池化 5
3 人脸识别系统 6
3.1 图像采集 6
3.2 人脸检测 7
3.3 数据整理 7
3.4 卷积神经网络的构建和训练 8
3.5 人脸实时识别 8
4 实验验证与结果分析 8
4.1 数据来源 8
4.2 代码实现 8
4.3 实验结果分析 9
5 结 语 9
参考文献: 9
1研究背景
随着计算机视觉的相关理论与应用研究的快速发展,计算机视觉技术在日常生活中应用的优越性也日益突显出来。用计算机对图像进行识别是计算机从相关的视频或图像序列中提取出相应的特征,从而让计算机“理解”图像的内容,并能正确分类的技术。安防意识的提升也让人们对于公共以及个人的安全需求不断攀升,使得计算机视觉在人脸识别、人脸检测等方面有了很高的应用价值。
人脸,与指纹、虹膜等一样,作为生物识别的一个重要特征,在档案管理系统、安全验证系统、公安系统的罪犯追踪、视频监控等方面有着很广阔的应用前景。虽然,相对于指纹识别、虹膜识别技术来说,人脸特征的唯一性要差一些, 但是采集手段十分简单、方便、隐蔽,使用者也不会因为隐私等问题而产生抗拒心理。人脸识别技术具有以下优点:
(1)非强制性:用户不需要专门配合人脸采集设备,几乎可以在无意识的状态下被获取人脸图像,这样不会引起人的注意从而不会令人反感;
(2)非接触性:用户不需要和设备直接接触就能获取人脸图像,相对于指纹识别,更加安全卫生;
(3)直观性:当身份验证系统无法确定被识别者的身份或者无法对其正常完成识别时,工作人员一般会保留被识别者的信息进行后期人工核对,而人脸信息因为具有良好的直观特性,符合人的视觉特性,自然很容易对其进行辨别,但对指纹信息和虹膜信息,则无法识别;
(4)简易性:人脸识别系统应用摄像设备采集人脸信息进行识别,而对摄像设备的性能没有特殊要求,包括手机、摄像头在内的常见摄像设备都可使用, 而且在不需要其他辅助设备的情况下就能完成识别。此外,摄像设备可安置在高处或者不易被人察觉的地方,避免被人恶意破坏。
目前,本文转载自http://www.biyezuopin.vip/onews.asp?id=15255因为人脸特征的唯一性比较差,在对信息安全性的要求比较高的系统中,只能作为一般的辅助方法。然而在安全性要求相对较低的系统中,比如用于公安部门的罪犯追踪,普通的身份验证和鉴别系统等,人脸识别技术还是有用武之地的。人脸识别主要应用于以下几个方面:
(1)门禁系统:在需要受安全保护的地区通过人脸识别技术辨识试图进入者的身份,防止不可靠的人进入;
(2)刑侦破案:工作人员通过一些途径获得某一嫌疑犯的相片或面部特征后,利用网络服务和人脸识别系统,在全国各地搜索逃犯,以便快速逮捕逃犯;
(3)视频监控:在例如银行、机场、体育场、商场等公共场所对人群进行监视,防止恐怖分子的活动;
(4)网络应用:利用人脸识别技术辅助信用卡进行网络支付,防止非信用卡的拥有者盗用信用卡;
(5)人机交互:对个人计算机进行人脸识别开机,对手机进行人脸识别解锁,利用人脸识别进行真实感虚拟游戏等。
由此可见,人脸识别技术对于现实具有重大意义。虽然人脸识别技术已经发展了半个世纪,但是人脸识别技术依旧面临着姿态、表情、光照、遮挡等变化造成的影响的巨大的挑战。近年来,广泛应用于模式识别、图像处理邻域的卷积神经网络算法对这些影响具有一定程度的不变性,所以将卷积神经网络应用于人脸识别有很大的意义。
import numpy as np
import tensorflow as tf
import cv2
import os
import nn
import time
# function [boundingbox] = bbreg(boundingbox,reg)
def bbreg(boundingbox, reg):
"""Calibrate bounding boxes"""
if reg.shape[1] == 1:
reg = np.reshape(reg, (reg.shape[2], reg.shape[3]))
w = boundingbox[:, 2] - boundingbox[:, 0] + 1
h = boundingbox[:, 3] - boundingbox[:, 1] + 1
b1 = boundingbox[:, 0] + reg[:, 0] * w
b2 = boundingbox[:, 1] + reg[:, 1] * h
b3 = boundingbox[:, 2] + reg[:, 2] * w
b4 = boundingbox[:, 3] + reg[:, 3] * h
boundingbox[:, 0:4] = np.transpose(np.vstack([b1, b2, b3, b4]))
return boundingbox
def generateBoundingBox(imap, reg, scale, t):
"""Use heatmap to generate bounding boxes"""
stride = 2
cellsize = 12
imap = np.transpose(imap)
dx1 = np.transpose(reg[:, :, 0])
dy1 = np.transpose(reg[:, :, 1])
dx2 = np.transpose(reg[:, :, 2])
dy2 = np.transpose(reg[:, :, 3])
y, x = np.where(imap >= t)
if y.shape[0] == 1:
dx1 = np.flipud(dx1)
dy1 = np.flipud(dy1)
dx2 = np.flipud(dx2)
dy2 = np.flipud(dy2)
score = imap[(y, x)]
reg = np.transpose(np.vstack([dx1[(y, x)], dy1[(y, x)], dx2[(y, x)], dy2[(y, x)]]))
if reg.size == 0:
reg = np.empty((0, 3))
bb = np.transpose(np.vstack([y, x]))
q1 = np.fix((stride * bb + 1) / scale)
q2 = np.fix((stride * bb + cellsize - 1 + 1) / scale)
boundingbox = np.hstack([q1, q2, np.expand_dims(score, 1), reg])
return boundingbox, reg
# function pick = nms(boxes,threshold,type)
def nms(boxes, threshold, method):
if boxes.size == 0:
return np.empty((0, 3))
x1 = boxes[:, 0]
y1 = boxes[:, 1]
x2 = boxes[:, 2]
y2 = boxes[:, 3]
s = boxes[:, 4]
area = (x2 - x1 + 1) * (y2 - y1 + 1)
I = np.argsort(s)
pick = np.zeros_like(s, dtype=np.int16)
counter = 0
while I.size > 0:
i = I[-1]
pick[counter] = i
counter += 1
idx = I[0:-1]
xx1 = np.maximum(x1[i], x1[idx])
yy1 = np.maximum(y1[i], y1[idx])
xx2 = np.minimum(x2[i], x2[idx])
yy2 = np.minimum(y2[i], y2[idx])
w = np.maximum(0.0, xx2 - xx1 + 1)
h = np.maximum(0.0, yy2 - yy1 + 1)
inter = w * h
if method is 'Min':
o = inter / np.minimum(area[i], area[idx])
else:
o = inter / (area[i] + area[idx] - inter)
I = I[np.where(o <= threshold)]
pick = pick[0:counter]
return pick
# function [dy edy dx edx y ey x ex tmpw tmph] = pad(total_boxes,w,h)
def pad(total_boxes, w, h):
"""Compute the padding coordinates (pad the bounding boxes to square)"""
tmpw = (total_boxes[:, 2] - total_boxes[:, 0] + 1).astype(np.int32)
tmph = (total_boxes[:, 3] - total_boxes[:, 1] + 1).astype(np.int32)
numbox = total_boxes.shape[0]
dx = np.ones((numbox), dtype=np.int32)
dy = np.ones((numbox), dtype=np.int32)
edx = tmpw.copy().astype(np.int32)
edy = tmph.copy().astype(np.int32)
x = total_boxes[:, 0].copy().astype(np.int32)
y = total_boxes[:, 1].copy().astype(np.int32)
ex = total_boxes[:, 2].copy().astype(np.int32)
ey = total_boxes[:, 3].copy().astype(np.int32)
tmp = np.where(ex > w)
edx.flat[tmp] = np.expand_dims(-ex[tmp] + w + tmpw[tmp], 1)
ex[tmp] = w
tmp = np.where(ey > h)
edy.flat[tmp] = np.expand_dims(-ey[tmp] + h + tmph[tmp], 1)
ey[tmp] = h
tmp = np.where(x < 1)
dx.flat[tmp] = np.expand_dims(2 - x[tmp], 1)
x[tmp] = 1
tmp = np.where(y < 1)
dy.flat[tmp] = np.expand_dims(2 - y[tmp], 1)
y[tmp] = 1
return dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph
# function [bboxA] = rerec(bboxA)
def rerec(bboxA):
"""Convert bboxA to square."""
h = bboxA[:, 3] - bboxA[:, 1]
w = bboxA[:, 2] - bboxA[:, 0]
l = np.maximum(w, h)
bboxA[:, 0] = bboxA[:, 0] + w * 0.5 - l * 0.5
bboxA[:, 1] = bboxA[:, 1] + h * 0.5 - l * 0.5
bboxA[:, 2:4] = bboxA[:, 0:2] + np.transpose(np.tile(l, (2, 1)))
return bboxA
def create_mtcnn(sess, model_path):
with tf.variable_scope('pnet'):
data = tf.placeholder(tf.float32, (None,None,None,3), 'input')
pnet = nn.PNet({'data':data})
pnet.load(os.path.join(model_path, 'det1.npy'), sess)
with tf.variable_scope('rnet'):
data = tf.placeholder(tf.float32, (None,24,24,3), 'input')
rnet = nn.RNet({'data':data})
rnet.load(os.path.join(model_path, 'det2.npy'), sess)
with tf.variable_scope('onet'):
data = tf.placeholder(tf.float32, (None,48,48,3), 'input')
onet = nn.ONet({'data':data})
onet.load(os.path.join(model_path, 'det3.npy'), sess)
pnet_fun = lambda img : sess.run(('pnet/conv4-2/BiasAdd:0', 'pnet/prob1:0'), feed_dict={'pnet/input:0':img})
rnet_fun = lambda img : sess.run(('rnet/conv5-2/conv5-2:0', 'rnet/prob1:0'), feed_dict={'rnet/input:0':img})
onet_fun = lambda img : sess.run(('onet/conv6-2/conv6-2:0', 'onet/conv6-3/conv6-3:0', 'onet/prob1:0'), feed_dict={'onet/input:0':img})
return pnet_fun, rnet_fun, onet_fun
def detect_face(img, minsize, pnet, rnet, onet, threshold, factor):
"""Detects faces in an image, and returns bounding boxes and points for them.
img: input image
minsize: minimum faces' size
pnet, rnet, onet: caffemodel
threshold: threshold=[th1, th2, th3], th1-3 are three steps's threshold
factor: the factor used to create a scaling pyramid of face sizes to detect in the image.
"""
factor_count=0
total_boxes=np.empty((0,9))
h=img.shape[0]
w=img.shape[1]
minl=np.amin([h, w])
m=12.0/minsize
minl=minl*m
# create scale pyramid
scales=[]
while minl>=12:
scales += [m*np.power(factor, factor_count)]
minl = minl*factor
factor_count += 1
# first stage
for scale in scales:
hs=int(np.ceil(h*scale))
ws=int(np.ceil(w*scale))
im_data = cv2.resize(img, (hs, ws), interpolation=cv2.INTER_AREA)
im_data = (im_data-127.5)*0.0078125
img_x = np.expand_dims(im_data, 0)
img_y = np.transpose(img_x, (0,2,1,3))
out = pnet(img_y)
out0 = np.transpose(out[0], (0,2,1,3))
out1 = np.transpose(out[1], (0,2,1,3))
boxes, _ = generateBoundingBox(out1[0,:,:,1].copy(), out0[0,:,:,:].copy(), scale, threshold[0])
# inter-scale nms
pick = nms(boxes.copy(), 0.5, 'Union')
if boxes.size>0 and pick.size>0:
boxes = boxes[pick,:]
total_boxes = np.append(total_boxes, boxes, axis=0)
numbox = total_boxes.shape[0]
if numbox>0:
pick = nms(total_boxes.copy(), 0.7, 'Union')
total_boxes = total_boxes[pick,:]
regw = total_boxes[:,2]-total_boxes[:,0]
regh = total_boxes[:,3]-total_boxes[:,1]
qq1 = total_boxes[:,0]+total_boxes[:,5]*regw
qq2 = total_boxes[:,1]+total_boxes[:,6]*regh
qq3 = total_boxes[:,2]+total_boxes[:,7]*regw
qq4 = total_boxes[:,3]+total_boxes[:,8]*regh
total_boxes = np.transpose(np.vstack([qq1, qq2, qq3, qq4, total_boxes[:,4]]))
total_boxes = rerec(total_boxes.copy())
total_boxes[:,0:4] = np.fix(total_boxes[:,0:4]).astype(np.int32)
dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph = pad(total_boxes.copy(), w, h)
numbox = total_boxes.shape[0]
if numbox>0:
# second stage
tempimg = np.zeros((24,24,3,numbox))
for k in range(0,numbox):
tmp = np.zeros((int(tmph[k]),int(tmpw[k]),3))
tmp[dy[k]-1:edy[k],dx[k]-1:edx[k],:] = img[y[k]-1:ey[k],x[k]-1:ex[k],:]
if tmp.shape[0]>0 and tmp.shape[1]>0 or tmp.shape[0]==0 and tmp.shape[1]==0:
tempimg[:,:,:,k] = cv2.resize(tmp, (24, 24), interpolation=cv2.INTER_AREA)
else:
return np.empty()
tempimg = (tempimg-127.5)*0.0078125
tempimg1 = np.transpose(tempimg, (3,1,0,2))
out = rnet(tempimg1)
out0 = np.transpose(out[0])
out1 = np.transpose(out[1])
score = out1[1,:]
ipass = np.where(score>threshold[1])
total_boxes = np.hstack([total_boxes[ipass[0],0:4].copy(), np.expand_dims(score[ipass].copy(),1)])
mv = out0[:,ipass[0]]
if total_boxes.shape[0]>0:
pick = nms(total_boxes, 0.7, 'Union')
total_boxes = total_boxes[pick,:]
total_boxes = bbreg(total_boxes.copy(), np.transpose(mv[:,pick]))
total_boxes = rerec(total_boxes.copy())
numbox = total_boxes.shape[0]
if numbox>0:
# third stage
total_boxes = np.fix(total_boxes).astype(np.int32)
dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph = pad(total_boxes.copy(), w, h)
tempimg = np.zeros((48,48,3,numbox))
for k in range(0,numbox):
tmp = np.zeros((int(tmph[k]),int(tmpw[k]),3))
tmp[dy[k]-1:edy[k],dx[k]-1:edx[k],:] = img[y[k]-1:ey[k],x[k]-1:ex[k],:]
if tmp.shape[0]>0 and tmp.shape[1]>0 or tmp.shape[0]==0 and tmp.shape[1]==0:
tempimg[:,:,:,k] = cv2.resize(tmp, (48, 48), interpolation=cv2.INTER_AREA)
else:
return np.empty()
tempimg = (tempimg-127.5)*0.0078125
tempimg1 = np.transpose(tempimg, (3,1,0,2))
out = onet(tempimg1)
out0 = np.transpose(out[0])
out2 = np.transpose(out[2])
score = out2[1,:]
ipass = np.where(score>threshold[2])
total_boxes = np.hstack([total_boxes[ipass[0],0:4].copy(), np.expand_dims(score[ipass].copy(),1)])
mv = out0[:,ipass[0]]
if total_boxes.shape[0]>0:
total_boxes = bbreg(total_boxes.copy(), np.transpose(mv))
pick = nms(total_boxes.copy(), threshold[2], 'Min')
total_boxes = total_boxes[pick,:]
return total_boxes
# This method is kept for debugging purpose
# h=img.shape[0]
# w=img.shape[1]
# hs, ws = sz
# dx = float(w) / ws
# dy = float(h) / hs
# im_data = np.zeros((hs,ws,3))
# for a1 in range(0,hs):
# for a2 in range(0,ws):
# for a3 in range(0,3):
# im_data[a1,a2,a3] = img[int(floor(a1*dy)),int(floor(a2*dx)),a3]
# return im_data
minsize = 20 # minimum size of face
thresh = [0.6, 0.7, 0.7] # three steps's threshold
factor = 0.709 # scale factor face image pyramid 图像缩小尺度
margin = 44
def detection(img):
'''
input: image
output: image of gray
'''
mtcnn_model_path = 'mtcnn_model/'
print('Creating networks and loading parameters')
with tf.Graph().as_default():
sess = tf.Session(config=tf.ConfigProto(log_device_placement=False))
with sess.as_default():
pnet, rnet, onet = create_mtcnn(sess, mtcnn_model_path)
t_start = time.time()
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = cv2.resize(img,(400,400))
img_size = np.asarray(img.shape)[0:2]
bounding_boxes = detect_face(img, minsize, pnet, rnet, onet, thresh, factor)
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
if len(bounding_boxes) > 0:
for face in range(len(bounding_boxes)):
det = np.squeeze(bounding_boxes[face, 0:4])
(startX, startY, endX, endY) = det.astype("int")
y = startY - 10 if startY - 10 > 10 else startY + 10
cv2.rectangle(img, (startX, startY), (endX, endY), (0, 0, 255), 2) # 用矩形标记人脸所在区域
cv2.putText(img,"{:.2f}%".format(bounding_boxes[face,4] * 100) ,
(startX, y),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
cv2.namedWindow('face', 0)
cv2.imshow('face', img)
cv2.waitKey(10000)
img = img[startY:endY, startX:endX]
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = cv2.resize(img,(32,32))
img_gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
cv2.namedWindow('img_gray', 0)
cv2.imshow('img_gray', img_gray)
cv2.waitKey(10000)
t_end = time.time()
print("MTCNN's run time: ", round((t_end-t_start)*1000,4),"ms")
return img_gray
if __name__ == '__main__':
mtcnn_model_path = 'mtcnn_model/'
print('Creating networks and loading parameters')
with tf.Graph().as_default():
sess = tf.Session(config=tf.ConfigProto(log_device_placement=False))
with sess.as_default():
pnet, rnet, onet = create_mtcnn(sess, mtcnn_model_path)
faceImages_path = 'E:/faceImages' #人脸数据文件路径
faceImagesGray_path = 'E:/faceImageGray' #人脸检测后的数据文件路径
file_name = os.listdir(faceImages_path)
i, j = 0, 0
for file in file_name:
print("step",i,":")
j = 0
for faceImage in os.listdir(faceImages_path + '/' + file):
t_start = time.time()
img = cv2.imread(faceImages_path + '/' + file + '/' + faceImage)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = cv2.resize(img,(400,400))
img_size = np.asarray(img.shape)[0:2]
bounding_boxes = detect_face(img, minsize, pnet, rnet, onet, thresh, factor)
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
if len(bounding_boxes) > 0:
for face in range(len(bounding_boxes)):
det = np.squeeze(bounding_boxes[face, 0:4])
(startX, startY, endX, endY) = det.astype("int")
y = startY - 10 if startY - 10 > 10 else startY + 10
cv2.rectangle(img, (startX, startY), (endX, endY), (0, 0, 255), 2) # 用矩形标记人脸所在区域
cv2.putText(img,"{:.2f}%".format(bounding_boxes[face,4] * 100) ,
(startX, y),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
# cv2.namedWindow('face', 0)
# cv2.imshow('face', img)
# cv2.waitKey(1)
img = img[startY:endY, startX:endX]
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = cv2.resize(img,(32,32))
img_gray = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
cv2.imwrite(faceImagesGray_path + '/' + file + '/' + faceImage, img_gray)# 将拍摄内容保存为jpg图片
t_end = time.time()
print("run time_",j,":", round((t_end-t_start)*1000,4),"ms")
cv2.destroyAllWindows()
j += 1
i += 1
更多推荐
所有评论(0)