Spark批量写数据到mysql
1.读取数据private def runJdbcDatasetExample(spark: SparkSession): Unit = {// 从JDBC source加载数据(load)val jdbcDF = spark.read.format("jdbc").option("url", "jdbc:mysql://127.0.0.1:3306/test").option("dbtable"
·
1.读取数据
private def runJdbcDatasetExample(spark: SparkSession): Unit = {
// 从JDBC source加载数据(load)
val jdbcDF = spark.read
.format("jdbc")
.option("url", "jdbc:mysql://127.0.0.1:3306/test")
.option("dbtable", "mytable")
.option("user", "root")
.option("password", "root")
.load()
val connectionProperties = new Properties()
connectionProperties.put("user", "root")
connectionProperties.put("password", "root")
val jdbcDF2 = spark.read
.jdbc("jdbc:mysql://127.0.0.1:3306/test", "mytable", connectionProperties)
// 指定读取schema的数据类型
connectionProperties.put("customSchema", "id DECIMAL(38, 0), name STRING")
val jdbcDF3 = spark.read
.jdbc("jdbc:mysql://127.0.0.1:3306/test", "mytable", connectionProperties)
}
值得注意的是,上面的方式如果不指定分区的话,Spark默认会使用一个分区读取数据,这样在数据量特别大的情况下,会出现OOM。在读取数据之后,调用DataFrameDF.rdd.partitions.size方法可以查看分区数。
2.批量写数据到mysql
case class Person(name: String, age: Int)
def main(args: Array[String]): Unit = {
// 创建sparkSession对象
val conf = new SparkConf()
.setAppName("BatchInsertMySQL")
val spark: SparkSession = SparkSession.builder()
.config(conf)
.getOrCreate()
import spark.implicits._
// MySQL连接参数
val url = JDBCUtils.url
val user = JDBCUtils.user
val pwd = JDBCUtils.password
// 创建Properties对象,设置连接mysql的用户名和密码
val properties: Properties = new Properties()
properties.setProperty("user", user) // 用户名
properties.setProperty("password", pwd) // 密码
properties.setProperty("driver", "com.mysql.jdbc.Driver")
properties.setProperty("numPartitions","10")
// 读取mysql中的表数据
val testDF: DataFrame = spark.read.jdbc(url, "test", properties)
println("testDF的分区数: " + testDF.rdd.partitions.size)
testDF.createOrReplaceTempView("test")
testDF.persist(StorageLevel.MEMORY_AND_DISK)
testDF.printSchema()
val result =
s"""-- SQL代码
""".stripMargin
val resultBatch = spark.sql(result).as[Person]
println("resultBatch的分区数: " + resultBatch.rdd.partitions.size)
// 批量写入MySQL
// 此处最好对处理的结果进行一次重分区
// 由于数据量特别大,会造成每个分区数据特别多
resultBatch.repartition(500).foreachPartition(record => {
val list = new ListBuffer[Person]
record.foreach(person => {
val name = Person.name
val age = Person.age
list.append(Person(name,age))
})
upsertDateMatch(list) //执行批量插入数据
})
// 批量插入MySQL的方法
def upsertPerson(list: ListBuffer[Person]): Unit = {
var connect: Connection = null
var pstmt: PreparedStatement = null
try {
connect = JDBCUtils.getConnection()
// 禁用自动提交
connect.setAutoCommit(false)
val sql = "REPLACE INTO `person`(name, age)" +
" VALUES(?, ?)"
pstmt = connect.prepareStatement(sql)
var batchIndex = 0
for (person <- list) {
pstmt.setString(1, person.name)
pstmt.setString(2, person.age)
// 加入批次
pstmt.addBatch()
batchIndex +=1
// 控制提交的数量,
// MySQL的批量写入尽量限制提交批次的数据量,否则会把MySQL写挂!!!
if(batchIndex % 1000 == 0 && batchIndex !=0){
pstmt.executeBatch()
pstmt.clearBatch()
}
}
// 提交批次
pstmt.executeBatch()
connect.commit()
} catch {
case e: Exception =>
e.printStackTrace()
} finally {
JDBCUtils.closeConnection(connect, pstmt)
}
}
spark.close()
}
}
JDBC连接工具类:
object JDBCUtils {
val user = "root"
val password = "root"
val url = "jdbc:mysql://localhost:3306/mydb"
Class.forName("com.mysql.jdbc.Driver")
// 获取连接
def getConnection() = {
DriverManager.getConnection(url,user,password)
}
// 释放连接
def closeConnection(connection: Connection, pstmt: PreparedStatement): Unit = {
try {
if (pstmt != null) {
pstmt.close()
}
} catch {
case e: Exception => e.printStackTrace()
} finally {
if (connection != null) {
connection.close()
}
}
}
}
Spark写入大量数据到MySQL时,在写入之前尽量对写入的DF进行重分区处理,避免分区内数据过多。在写入时,要注意使用foreachPartition来进行写入,这样可以为每一个分区获取一个连接,在分区内部设定批次提交,提交的批次不易过大,以免将数据库写挂。
更多推荐
已为社区贡献2条内容
所有评论(0)