import cv2
import numpy as np
from matplotlib import pyplot as plt
from PIL import Image
import pytesseract
 
img_rgb = cv2.imread('USNI.jpg')

#模拟匹配,将方块以黑色填充,后面二值化就可以以过滤掉
img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2GRAY)
template = cv2.imread('Template.jpg',0)
w, h = template.shape[::-1] 
res = cv2.matchTemplate(img_gray,template,cv2.TM_CCOEFF_NORMED)
threshold = 0.8
loc = np.where( res >= threshold)
for pt in zip(*loc[::-1]):
    cv2.rectangle(img_rgb, pt, (pt[0] + w, pt[1] + h), (0,0,0), -1)

#二值化
img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2GRAY)
img_gray = cv2.resize(img_gray, (0, 0), fx=0.5, fy=0.5, interpolation=cv2.INTER_NEAREST)
ret, binary = cv2.threshold(img_gray, 127, 255, cv2.THRESH_BINARY)
print("阈值:", ret)

#文字识别
content = pytesseract.image_to_string(binary)
print(content)

cv2.namedWindow('input_image', cv2.WINDOW_AUTOSIZE)
cv2.imshow('input_image', binary)
cv2.waitKey(0)
cv2.destroyAllWindows()

Logo

腾讯云面向开发者汇聚海量精品云计算使用和开发经验,营造开放的云计算技术生态圈。

更多推荐