一、准备环境

1.1 docker安装单节点集群

[官方文档:Install Elasticsearch with Docker | Elasticsearch Guide 8.14] | Elastic

创建网络

docker network create elastic

pull镜像

docker pull docker.elastic.co/elasticsearch/elasticsearch:8.14.1

启动容器

docker run --name es01 --net elastic -p 9200:9200 -it -m 1GB docker.elastic.co/elasticsearch/elasticsearch:8.14.3

获取密码和token

docker exec -it es01 /usr/share/elasticsearch/bin/elasticsearch-reset-password -u elastic
docker exec -it es01 /usr/share/elasticsearch/bin/elasticsearch-create-enrollment-token -s kibana

验证连接

curl -k -u elastic:$ELASTIC_PASSWORD https://localhost:9200

安装kinaba

#拉取镜像
docker pull docker.elastic.co/kibana/kibana:8.14.1
#启动容器
docker run --name kib01 --net elastic -p 5601:5601 docker.elastic.co/kibana/kibana:8.14.1
#需要使用es的token
docker exec -it es01 /usr/share/elasticsearch/bin/elasticsearch-create-enrollment-token -s kibana
#为kibana生成密码
docker exec -it es01 /usr/share/elasticsearch/bin/elasticsearch-reset-password -u elastic
1.2 安装ik分词器-在线、离线

在线安装,后面选择和es对应的版本

bin/elasticsearch-plugin install https://get.infini.cloud/elasticsearch/analysis-ik/8.4.1

离线安装

下载https://release.infinilabs.com/analysis-ik/stable/elasticsearch-analysis-ik-8.14.1.zip ,解压后放在elasticsearch/plugins目录,重启es。

1.3 将ik分词器打包到es镜像

创建DockerFile文件

FROM docker.elastic.co/elasticsearch/elasticsearch:8.14.1
ADD analysis-ik /usr/share/elasticsearch/plugins/analysis-ik

目录结构如下

在这里插入图片描述

创建镜像,在当前路径下执行

docker build -f DockerFile -t elasticsearch-ik:8.14.1 .

执行docker images可以看到打包好的镜像在本地

1.4 安装完验证
验证环境
curl -k https://127.0.0.1:9200/_analyze --user elastic:n8LbPoUIC1xGDNL0rTrw -d '{"analyzer": "ik_max_word",  "text":"水雨"}' --header "Content-Type: application/json"
验证索引
curl -k https://127.0.0.1:9200/_cat/indices/so-comp-prod?v --user elastic:GMOJWtxHKqGtcfUZwd=f 

curl -k GET https://127.0.0.1:9200/_cat/indices?v  --user elastic:GMOJWtxHKqGtcfUZwd=f 
验证数据
curl -k https://192.168.210.106:9200/so-comp-prod/_doc/30?pretty --user elastic:n8LbPoUIC1xGDNL0rTrw
curl -X GET 'https://127.0.0.1:9200/solution_mp_01/_search' \
-k \
--user elastic:GMOJWtxHKqGtcfUZwd=f  \
-H 'Content-Type: application/json' \
-d '{
  "query": {
    "multi_match": {
      "fields": ["summary"],
      "query": "解决方案",
      "analyzer": "ik_smart"
    }
  }
}'

二、Elasticsearch常用语句

2.1 新建索引
PUT product
{
    "settings": {
      "analysis": {
        "analyzer": {
          "default": {
            "type": "ik_max_word"  #索引时使用的分词器
          },
          "default_search": {
            "type": "ik_smart"  #检索时使用的分词器
          }
        }
      },
      "index": {
        "number_of_shards": "2",
        "number_of_replicas": "0"
      }
    },
    "mappings": {
      "properties": {
        "id": {"type": "long"},
        "advertise": {"type": "double"},
        "product": {"type": "text"},
        "summary": {"type": "text"},
        "function": {"type": "text", "fields": {"keyword": {"ignore_above": 256, "type": "keyword"}}} # function.keyword字段不分词
      }
    }
  }

#查看索引的映射情况
GET product/_mapping/
2.2 普通查询 match
GET product/_search
{
  "query": {
    "match": {
      "name": {
        "query":"袜子",
        "analyzer": "ik_smart"
      }
    }
  }
}
2.3 多字段查询 multi_match
GET product/_search
{
  "query": {
    "multi_match": {
      "fields": ["name", "summary"],
      "query": "条纹",
      "analyzer": "ik_smart"
    }
  }
}
2.4 match_phrase 提升精确率
#match 和 match_phrase结合
GET product/_search
{
  "query": {
    "bool":{
      "must": [
        {
          "multi_match": {
            "fields": ["name","summary"],
            "query": "红色条纹袜子"
          }
        }
      ],
      "should":[
        {
          "match_phrase":{
            "summary":{
              "query": "红色条纹袜子",
              "slop":9
            }
          }
        }
        ]
    }
  }
}

2.5 term 检索
GET product/_search
{
  "query": {
    "terms": {
      "function.keyword": [ "服饰", "袜子" ],
      "boost": 1.0
    }
  }
}
2.6 向量检索
PUT vec_demo
{
  "mappings": {
    "properties": {
      "name_vector": {
        "type": "dense_vector",
        "dims": 3,
        "similarity": "l2_norm"
      },
      "name": {
        "type": "text"
      }
    }
  }
}
POST emb_ind/_search
{
  "knn": {
    "field": "dense_vector",
    "query_vector": [-5, 9, -12,10],
    "k": 10,
    "num_candidates": 100
  },
  "fields": [ "name", "dense_vector" ]
}
2.7 highlight
{
  "query":{……},
  "highlight": {
    "fields":{
      "name":{},
      "summary":{},
      "solution":{},
      "requirement":{},
      "function_point":{}
      },
    "fragment_size": 150, 
    "number_of_fragments": 3,
    "encoder": "html",
    "require_field_match": false,
    "pre_tags": ["<span style='color:yellow'>"], 
    "post_tags": ["</span>"]
  }
}
2.8 explain
GET so-comp-prod/_search
{
  "explain": true,  #响应中包含解释
  "query": {
    "match": {
      "summary": {
        "query":"袜子",
        "analyzer": "ik_smart"
      }
    }
  }
}
2.9 analyze
GET /_analyze
{
  "analyzer": "ik_max_word",
  "text":"一双红色袜子"
}


#查看文档中某一个字段的分词结果
GET /product/_analyze
{
  "field" : "summary",
  "text": "汽车行业"
}
2.10 更新license

_license接口查询license 的情况

sh-5.0$ curl -u elastic:n8LbPoUIC1xGDNL0rTrw -XGET https://localhost:9200/_license -k
{
  "license" : {
    "status" : "expired",
    "uid" : "3c453c5c-729f-4efd-b2e6-0ec32fc9b35b",
    "type" : "trial",
    "issue_date" : "2024-07-17T09:51:31.596Z",
    "issue_date_in_millis" : 1721209891596,
    "expiry_date" : "2024-08-16T09:51:31.596Z",
    "expiry_date_in_millis" : 1723801891596,
    "max_nodes" : 1000,
    "max_resource_units" : null,
    "issued_to" : "docker-cluster",
    "issuer" : "elasticsearch",
    "start_date_in_millis" : -1
  }

es6.X及以前的版本是需要去官网申请一个type为basic的免费license, 8.x以后的版本是直接使用以下_license/start_basic就可以更新license

curl -u elastic:n8LbPoUIC1xGDNL0rTrw -XPOST https://localhost:9200/_license/start_basic?acknowledge=true -k -H "Content-Type:application/json"

三、集成python

3.1 python-dsl

官方文档:Elasticsearch DSL — Elasticsearch DSL 8.14.0 documentation (elasticsearch-dsl.readthedocs.io)

安装依赖 requirement
# Elasticsearch 8.x
elasticsearch-dsl>=8.0.0,<9.0.0
创建连接 connections
from elasticsearch_dsl import connections

connections.create_connection(
    hosts=['https://IP:9200'],
    basic_auth=('elastic','n8LbPoUIC1xGDNL0rTrw'),
    alias='es',
    verify_certs=False,
    ssl_show_warn=False
)
# 获取连接
es_conn = connections.get_connection('es')
创建索引,插入数据 Persistence
  • 方式一:先创建index, 然后插入dict

创建一个配置文件,命名es_index.py

"index": {
        "settings": {
            "analysis": {
                "analyzer": {
                    "default": {
                        "type": "ik_max_word"
                    }
                }
            },
            "index": {
                "number_of_shards": "1",
                "number_of_replicas": "0"
            }
        },
        "mappings": {
            "properties": {
                "id": {"type": "long"},
                "name": {"type": "text"},
                "summary": {"type": "text"},
                "solution_class": {"type": "text", "fields": {"keyword": {"ignore_above": 256, "type": "keyword"}}}     
            }
        }
    }

创建index

from es_index import index

es_conn = connections.get_connection("es")
if not es_conn.indices.exists(index='product'):
    es_conn.indices.create(index='product', body=index)
#插入数据
res = es_conn.index(index='product', body=ss.to_dict(), id=doc_id)
return res['result']  # "created"或"updated"
  • 方式二

创建一个继承Document的类

from datetime import datetime
from elasticsearch_dsl import Document, Date, Integer, Keyword, Text, connections

class Product(Document):
    id = Integer()
    name = Text(analyzer='ik_max_word', search_analyzer='ik_smart', fields={"keyword": Keyword()})
    summary = Text(analyzer='ik_max_word', search_analyzer='ik_smart')
    solution_class = Text(analyzer='ik_max_word', search_analyzer='ik_smart')
    tags = Keyword()
    published_from = Date()
    
    class Index:
        name = 'product'
        settings = {  # 可选的索引设置
            "number_of_shards": 1,
            "number_of_replicas": 0,
        }
        
    def is_published(self):
        return datetime.now() > self.published_from

创建索引并插入数据

# init mapping
Product.init(using='es')

product = Product(meta={'id':42}, id=1042,name='bowl', summary='bowl with a beautiful and cute fox in it',solution_class='home',tags='Linabell')
product.published_from = datetime.now()
# insert data
product.save(using='es')
# 查询
product = Product.get(id=42, using='es')
Search-term|match|multi_match
from elasticsearch_dsl import Search, Q, connections
from elasticsearch_dsl.query import MultiMatch
#match
q = Q({"match": {column_name: {"query": value, "analyzer": "ik_smart"}}})
#term
q = Q({"term": {column_name + ".keyword": value}})
#multi-match
q = MultiMatch(query=value, fields=column_names, analyzer='ik_smart')

s = Search(using="es", index=index_name).query(q)
res = s[start_index:end_index].execute() #分页功能,默认返回前10条

results = [ABC(**data.to_dict()) for data in res] #ABC替换成需要转换的pojo类
size = res.hits.total.value
return results, size
3.2 集成Spring

由于项目的spring版本是2.X ,所以需要单独引入8.14版本的es

添加依赖
        <dependency>
            <groupId>co.elastic.clients</groupId>
            <artifactId>elasticsearch-java</artifactId>
            <version>8.14.1</version>
        </dependency>
        <dependency>
            <groupId>jakarta.json</groupId>
            <artifactId>jakarta.json-api</artifactId>
            <version>2.1.3</version>
        </dependency>

        <dependency>
            <groupId>com.fasterxml.jackson.core</groupId>
            <artifactId>jackson-databind</artifactId>
            <version>2.17.0</version>
        </dependency>
        <dependency>
            <groupId>com.fasterxml.jackson.core</groupId>
            <artifactId>jackson-core</artifactId>
            <version>2.17.0</version>
        </dependency>

配置ElasticsearchClient``````bean

    @Bean
    public ElasticsearchClient elasticsearchClient(){
        # openssl x509 -fingerprint -sha256 -noout -in http_ca.crt
        SSLContext sslContext = TransportUtils
                .sslContextFromCaFingerprint(fingerPrint);
        BasicCredentialsProvider credsProv = new BasicCredentialsProvider();
        credsProv.setCredentials(
                AuthScope.ANY, new UsernamePasswordCredentials(username, password)
        );
        RestClient client = RestClient.builder(HttpHost.create(host))
                .setHttpClientConfigCallback(hc -> hc
                        .setSSLContext(sslContext)
                        .setSSLHostnameVerifier(NoopHostnameVerifier.INSTANCE)
                        .setDefaultCredentialsProvider(credsProv)
                )
        .build();

        ElasticsearchTransport transport = new RestClientTransport(client,new JacksonJsonpMapper());
        return new ElasticsearchClient(transport);
    }
创建索引、删除索引
@Autowired
ElasticsearchClient client;

#创建索引 path 是索引文件的位置
public boolean createIndex(String index, String path, boolean force) throws IOException {
        boolean isExited = exitsIndex(index);
        if (!isExited) {
            InputStream input = this.getClass().getClassLoader().getResourceAsStream(path);

            CreateIndexRequest req = CreateIndexRequest.of(b -> b
                    .index(index)
                    .withJson(input)
            );
            boolean created = client.indices().create(req).acknowledged();

            return created;
        } 
        return false;
    }
    
#删除索引
    public boolean deleteIndex(String index) throws IOException {
        DeleteIndexRequest request = DeleteIndexRequest.of(b -> b.index(index));
        DeleteIndexResponse response = client.indices().delete(request);
        boolean deleted = response.acknowledged();
        logger.info("Elasticsearch delete index {} : {}" ,index, deleted);
        return deleted;
    }
插入数据
public String saveDoc(Product prod) throws IOException {
        IndexResponse res = client.index(s -> s
                .index(INDEX)
                .id(prod.getId())
                .document(prod)
        );
        return res.result().jsonValue();
    }

#批量插入
    public void bulkSave(List<Product> prodList) throws IOException {
        BulkRequest.Builder builder = new BulkRequest.Builder();
        for (Product prod : prodList){
            builder.operations(op -> op
                    .index(idx -> idx
                            .index(INDEX)
                            .id(prod.getId())
                            .document(prod)
                    )
            );
        }
        BulkResponse response = client.bulk(builder.refresh(Refresh.WaitFor).build());
    }
查询 multi-search
public List<Product> search(List<String> fieldlist, String queryText) throws IOException {
        Query query = MultiMatchQuery.of(m -> m
                .fields(fieldlist)
                .query(queryText)
        )._toQuery();

        SearchResponse<Product> search = client.search(s -> s
                        .index(INDEX)
                        .query(query)
                        .from(0)  
                        .size(30)
                , Product.class
        );
        List<Product> prodList = new ArrayList<>();
        for (Hit<Product> hit : search.hits().hits()) {
            Product prod = hit.source();
            prodList.add(prod);
        }
        return prodList;
    }
带权重查询

对于有推广的产品,增加一列advertise的权重,值设为2.0,普通商品设置为1.0

     带权重查询
     GET prod/_search
     {
       "query": {
         "function_score": {
           "query": {
             "multi_match": {
               "fields": ["function","summary"],
               "query": "数智"
             }
           },
           "field_value_factor": {
             "field":"advertise"
           }
         }
       }
     }
public List<Product> searchWithAdvertise(List<String> fieldlist, String queryText, String weightColumn) throws IOException {
        Query query = MultiMatchQuery.of(m -> m
                .fields(fieldlist)
                .query(queryText)
        )._toQuery();
        FieldValueFactorScoreFunction factor = FieldValueFactorScoreFunction.of(f -> f
                .field(weightColumn)
        );
        FunctionScore functionScore = FunctionScore.of(s -> s
                .fieldValueFactor(factor)
        );
        FunctionScoreQuery functionScoreQuery = FunctionScoreQuery.of(fq -> fq
                .functions(functionScore)
                .query(query)
        );

        Query query1 = Query.of(s -> s.functionScore(functionScoreQuery));

        SearchResponse<Product> search = client.search(s -> s
                        .index(INDEX)
                        .query(query1)
                        .from(0)
                        .size(30)
                , Product.class
        );
        List<Product> prodList = new ArrayList<>();
        for (Hit<Product> hit : search.hits().hits()) {
            Product prod = hit.source();
            prodList.add(prod);
        }
        return prodList;
    }
Logo

腾讯云面向开发者汇聚海量精品云计算使用和开发经验,营造开放的云计算技术生态圈。

更多推荐