python解析pcap提取{src ip,src port,protocol,dst ip, dst port}五元组,再提取网络流(包括前向流与后向流)
通过解析pcap文件,按照{src ip, src port, transport protocol , dst ip, dst port} 拆分流,并提取出前向流(Forward)与后向流(Backward),代码如下:import pysharkimport pandas as pdclass Net_flow(object):def __init__(self, file_path):sel
·
通过解析pcap文件,按照{src ip, src port, transport protocol , dst ip, dst port} 拆分流,并提取出前向流(Forward)与后向流(Backward),代码如下:
import pyshark
import pandas as pd
class Net_flow(object):
def __init__(self, file_path):
self.cap = pyshark.FileCapture(file_path)
# {ip_server, ip_client,transport ,port_server, port_client}
def get_target_client_ip_port(self, num=None):
for index, pkt in enumerate(self.cap):
ip_server = pkt.ip.src
port_server = pkt.tcp.srcport
# protocol_number = pkt.ip.proto #有时要提前协议号,就是这行代码 icmp 1, igmp 2, tcp 6, udp 17
ip_client = pkt.ip.dst
port_client = pkt.tcp.dstport
timestamp = pkt.sniff_timestamp
transport_layer = pkt.transport_layer
length = pkt.length
if num:# 如果指定num=100,则只会输出100个流
if index > num:
return [ip_server + ":" + port_server, ip_client + ":" + port_client, transport_layer, timestamp, length]
yield [ip_server + ":" + port_server, ip_client + ":" + port_client, transport_layer, timestamp,length]
if __name__ == '__main__':
try:
pcap_file = "pacp文件地址"
net_flow = Net_flow(pcap_file)
target_client_ip_port = net_flow.get_target_client_ip_port()
with open("保存的文件.csv", 'a') as f:# 将提取出的五元组保存起来
for target_client_ip_port_temp in target_client_ip_port:
write_str = ",".join(target_client_ip_port_temp)
f.write(write_str + "\r\n")
except Exception as e:
print(e)
上面的代码提取出了五元组,将它们保存起来或是直接放在内存中,然后就可以根据这个提取网络流了,这里包括前向流(forward)与后向流(backward):
import pandas as pd
def get_features(file_name):
finish_flow_list = []
dataframe = pd.read_csv(file_name, header=None)
dataframe.columns = ['addr_ip', 'dst_ip', 'protocol', 'timestamp', 'length']
# 思路是通过value_counts将大的dataframe拆分成小的dataframe
addr_diff = dataframe['addr_ip'].value_counts().index
for addr_ip in addr_diff:
addr_df = dataframe[dataframe['addr_ip'] == addr_ip]
diff_dst_index = addr_df['dst_ip'].value_counts().index
for dst_ip in diff_dst_index:
# 定义addr_ip->dst_ip为forward
forward_se = dataframe.loc[dataframe['addr_ip'] == addr_ip, 'dst_ip'] == dst_ip # 这是通过两列数据定位dataframe
forward_df = dataframe.loc[forward_se[forward_se == True].index]
forward_df['state'] = 'forward'
backward_se = dataframe.loc[dataframe['addr_ip'] == dst_ip, 'dst_ip'] == addr_ip
backward_df = dataframe.loc[backward_se[backward_se == True].index]
backward_df['state'] = 'backward'
yield pd.concat([forward_df, backward_df])
def analyze_flow(dataframe):
forward_df_all = dataframe[dataframe['state'] == 'forward']
backward_df_all = dataframe[dataframe['state'] == 'backward']
# 对前向流与后向流的操作
pass
if __name__ == '__main__':
try:
flow_df = get_features("五元组.csv")
for df in flow_df:
analyze_flow(df)
except Exception as e:
print(e)
更多推荐
已为社区贡献18条内容
所有评论(0)