python科学计算之Numpy详解(一)
一、Numpy是什么NumPy(Numerical Python的缩写)是一个开源的Python科学计算库。使用NumPy,就可以很自然地使用数组和矩阵。 NumPy包含很多实用的数学函数,涵盖线性代数运算、傅里叶变换和随机数生成等功能。这个库的前身是1995年就开始开发的一个用于数组运算的库。经过了长时间的发展,基本上成了绝大部分Python科学计算的基础包,当然也包括所有提供Python接..
一、Numpy是什么
NumPy(Numerical Python的缩写)是一个开源的Python科学计算库。使用NumPy,就可以很自然地使用数组和矩阵。 NumPy包含很多实用的数学函数,涵盖线性代数运算、傅里叶变换和随机数生成等功能。这个库的前身是1995年就开始开发的一个用于数组运算的库。经过了长时间的发展,基本上成了绝大部分Python科学计算的基础包,当然也包括所有提供Python接口的深度学习框架。
二、为什么使用Numpy
-
a)便捷:对于同样的数值计算任务,使用NumPy要比直接编写Python代码便捷得多。这是因为NumPy能够直接对数组和矩阵进行操作,可以省略很多循环语句,其众多的数学函数也会让编写代码的工作轻松许多。
- b)性能:NumPy中数组的存储效率和输入输出性能均远远优于Python中等价的基本数据结构(如嵌套的list容器)。其能够提升的性能是与数组中元素的数目成比例的。对于大型数组的运算,使用NumPy的确很有优势。对于TB级的大文件,NumPy使用内存映射文件来处理,以达到最优的数据读写性能。
- c)高效:NumPy的大部分代码都是用C语言写成的,这使得NumPy比纯Python代码高效得多。
当然,NumPy也有其不足之处,由于NumPy使用内存映射文件以达到最优的数据读写性能,而内存的大小限制了其对TB级大文件的处理;此外,NumPy数组的通用性不及Python提供的list容器。因此,在科学计算之外的领域,NumPy的优势也就不那么明显。
三、Numpy的安装
- 官网安装。http://www.numpy.org/。
- pip 安装。pip install numpy。
- LFD安装,针对windows用户http://www.lfd.uci.edu/~gohlke/pythonlibs/。
- Anaconda安装(推荐),Anaconda里面集成了很多关于python科学计算的第三方库,主要是安装方便。下载地址:https://www.anaconda.com/download/。
验证: print( np.version.version)
四、numpy 基础
NumPy的主要对象是同种元素的多维数组。这是一个所有的元素都是一种类型。在NumPy中维度(dimensions)叫做轴(axes),轴的个数叫做秩(rank)。NumPy的数组类被称作 ndarray(矩阵也叫数组) 。通常被称作数组。常用的ndarray对象属性有:ndarray.ndim(数组轴的个数,轴的个数被称作秩),ndarray.shape(数组的维度。这是一个指示数组在每个维度上大小的整数元组。例如一个n行m列的矩阵,它的shape属性将是(2,3),这个元组的长度显然是秩,即维度或者ndim属性),ndarray.size(数组元素的总个数,等于shape属性中元组元素的乘积),ndarray.dtype(一个用来描述数组中元素类型的对象,可以通过创造或指定dtype使用标准Python类型。另外NumPy提供它自己的数据类型)。
Numpy的数据类型:
Numpy内置的特征码:
int8, int16, int32,int64 可以由字符串’i1’, ‘i2’,’i4’, ‘i8’代替,其余的以此类推。
更多推荐
所有评论(0)