自动化机器学习(AutoML)入门简介
近期在学习研究一些关于自动化机器学习方面的论文,本文作为该系列的第一篇文章,就AutoML的一些基本概念和现状进行简单分享,权当抱砖引玉。
近期在学习研究一些关于自动化机器学习方面的论文,本文作为该系列的第一篇文章,就AutoML的一些基本概念和现状进行简单分享,权当抱砖引玉。
图片源自《Taking Human out of Learning Applications: A Survey on Automated Machine Learning》2018
在算法行业有这样一句话,大意是说80%的时间用在做数据清洗和特征工程,仅有20%的时间用来做算法建模,其核心是在说明数据和特征所占比重之大。与此同时,越来越多的数据从业者们也希望能够降低机器学习的入门门槛,尤其是降低对特定领域的业务经验要求、算法调参经验等。基于这一背景,AutoML应运而生。
如何理解AutoML呢?从字面意思来看,AutoML即为Auto+ML,是自动化+机器学习两个学科的结合体;从技术角度来说,则是泛指在机器学习各阶段流程中有一个或多个阶段采取自动化而无需人工参与的实现方案。例如在本文开篇引用的AutoML经典图例中:其覆盖了特征工程(Feature Engineering)、模型选择(Model Selection)、算法选择(Algorithm Selection)以及模型评估(Model Evaluation)4个典型阶段,而仅有问题定义、数据准备和模型部署这三部分工作交由人工来实现。
AutoML,与其说是一项技术,不如称之为一种思想:即将一门学科的技术(自动化)引入另一门学科(机器学习)的思想。所以从某种角度来说,AutoML本不是什么新鲜技术,也并见得需要创新性突破可言。那是什么促使其诞生并盛行于当下呢?原因主要有三:
- 数据从业者的懒惰。俗话说,懒惰是人类进步的源动力,这一点在AutoML这件事上体现的淋漓尽致。因为数据从业者们渴望从繁杂冗长的数据清洗、特征工程以及调参炼丹的无趣过程中解脱出来,自然而然的想法就是希望这一过程能够Auto起来!当然,这一过程也可正面解读为对技术精进的不懈追求……
- 对降低ML入门门槛的期盼。毫无疑问,以机器学习为代表的AI行业是当下最热门技术之一,也着实在很多场景解决了不少工程化的问题,所以越来越多的数据从业者投身其中。但并不是每名算法工程师或者数据科学家都有充分的业务经验和炼丹技巧,所以更多人是希望能够降低这一入门门槛,简化机器学习建模流程。
- 足够的数据体量和日益提升的算法算力。客观来讲,没有足够的数据量谈Auto是不切实际的,因为不足以学到足够的知识以实现Auto;而另一方面,AutoML的实现过程其实充满了大量的迭代运算,所以完成单次的AutoML意味着约等于成百上千次的单次ML,其时间成本不得不成为AutoML领域的一个不容忽视的约束条件,而解决这一问题则一般需依赖优秀的算法和充足的算力。
上面介绍了AutoML的产生原因,其实是回答了Why的问题。与Why相对应的一般就是What和How的问题。那么AutoML是What呢?当然,这里不打算用开篇图例中的模块来讲解What的问题,而是用人话来说说AutoML当下的几个热点:
- 模型选择(Model Selection)以及超参优化(HPO)。这两个阶段可能是AutoML里最早涉及和最为关键的技术,早期的AutoML产品/工具其实也是主攻这两个方向,例如Auto-WEKA和Auto-Sklearn就都是以这两方面的实现为主。其中模型选择其实主要还是枚举为主,即将常用的模型逐一尝试而后选出最好的模型或其组合。而HPO则相当于是加强版的GridSearch,都是解决最优超参数的问题,只是解决的算法不同罢了,其中基于贝叶斯的超参优化是主流。
- 自动化特征工程(AutoFE)。AutoFE是解决原始特征表达信息不充分或者存在冗余的问题,相应的解决方案就是特征衍生+特征选择,而AutoFE一般是考虑这两个过程的联合实现抑或加一些创新的优化设计。
- 元学习(Meta Learning)和迁移学习(Transfer Learning)。前面提到的模型选择,虽然多数产品都是对候选模型进行枚举尝试,但也有更为优秀的实现方案,那就是元学习。例如Auto-Sklearn中其实是集成了元学习的功能,在处理新的数据集学习任务时可以借鉴历史任务而会自动选择更为可能得到较好性能的模型,这个过程也称之为warn-start。如果说元学习适用于经典机器学习算法,那么迁移学习其实则主要适用于深度学习技术:通过对历史任务的学习经验对后续类似场景的神经网络架构设计提供一定的先验信息。
- 神经网络架构搜索(NAS)。同样是针对深度学习的神经网络架构,当没有任何经验可供迁移时,那么如何设计和构建神经网络架构就是一个需要慎重考虑的问题。对此的解决方案即为NAS——neural architecture search!
简单说完Why和What的问题之后,介绍How的问题就不那么简单了。这本身是一个需要持续理解和不断精进的过程,如果现在来说也只能描述的主流产品一级:Auto-WEKA、Hyperopt-Sklearn、Auto-Sklearn、TPOT、H2O、AutoGluon……这份清单其实可以罗列几十种,遍布国内外。
当然,罗列是一回事,讲得清楚用得娴熟则又是另一回事了……
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
😝有需要的小伙伴,可以点击下方链接免费领取或者V扫描下方二维码免费领取🆓
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
😝有需要的小伙伴,可以Vx扫描下方二维码免费领取==🆓
更多推荐
所有评论(0)