
BDD100K数据集下载(百度网盘)及标签转为yolo格式
链接:https://pan.baidu.com/s/1AI1gpKZETjby81hGSSuzbg提取码:ikun
·
链接:https://pan.baidu.com/s/1AI1gpKZETjby81hGSSuzbg
提取码:ikun
json转txt代码如下:
import re
import os
import json
def search_file(data_dir, pattern=r'\.jpg$'):
root_dir = os.path.abspath(data_dir)
for root, dirs, files in os.walk(root_dir):
for f in files:
if re.search(pattern, f, re.I):
abs_path = os.path.join(root, f)
# print('new file %s' % absfn)
yield abs_path
class Bdd2yolov5:
def __init__(self):
self.bdd100k_width = 1280
self.bdd100k_height = 720
self.select_categorys = ["person", "rider", "car", "bus", "truck", "bike", "motor"] # 自己需要的类别
self.cat2id = {
"person": 0, # 数字代表目标类别
"rider": 0,
"car": 1,
"bus": 1,
"truck": 1,
"bike": 1,
"motor": 1
}
@property
def all_categorys(self):
return ["person", "rider", "car", "bus", "truck", "bike", # 人 骑手 车 公交车 货车 自行车
"motor", "traffic light", "traffic sign", "train"] # 摩托 交通信号灯 交通标志 火车
def _filter_by_attr(self, attr=None):
if attr is None:
return False
# 过滤掉晚上的图片
# if attr['timeofday'] == 'night':
# return True
# return False
def _filter_by_box(self, w, h):
# size ratio
# 过滤到过于小的小目标
# threshold = 0.001
# if float(w * h) / (self.bdd100k_width * self.bdd100k_height) < threshold:
# return True
return False
def bdd2yolov5(self, path):
lines = ""
with open(path) as fp:
j = json.load(fp)
if self._filter_by_attr(j['attributes']):
return
for fr in j["frames"]:
dw = 1.0 / self.bdd100k_width
dh = 1.0 / self.bdd100k_height
for obj in fr["objects"]:
if obj["category"] in self.select_categorys:
idx = self.cat2id[obj["category"]]
cx = (obj["box2d"]["x1"] + obj["box2d"]["x2"]) / 2.0
cy = (obj["box2d"]["y1"] + obj["box2d"]["y2"]) / 2.0
w = obj["box2d"]["x2"] - obj["box2d"]["x1"]
h = obj["box2d"]["y2"] - obj["box2d"]["y1"]
if w <= 0 or h <= 0:
continue
if self._filter_by_box(w, h):
continue
# 根据图片尺寸进行归一化
cx, cy, w, h = cx * dw, cy * dh, w * dw, h * dh
line = f"{idx} {cx:.6f} {cy:.6f} {w:.6f} {h:.6f}\n"
lines += line
if len(lines) != 0:
# 转换后的以*.txt结尾的标注文件我就直接和*.json放一具目录了
yolo_txt = path.replace(".json", ".txt")
with open(yolo_txt, 'w') as fp2:
fp2.writelines(lines)
# print("%s has been dealt!" % path)
if __name__ == "__main__":
bdd_label_dir = r"D:\BaiduNetdiskDownload\BDD100K\bdd100k\labels\100k\val"
cvt = Bdd2yolov5()
for path in search_file(bdd_label_dir, r"\.json$"):
cvt.bdd2yolov5(path)
更多推荐
所有评论(0)