opencv+yolov8实现监控画面报警功能
YOLOv8支持Pose和Segment,在使用TensorRT可以跑到1-2ms一帧YOLOv8提供了一个全新的SOTA模型,包括P5 640和P6 1280分辨率的目标检测网络和基于YOLACT的实例分割模型。YOLOv8和YOLOv5一样,基于缩放系数也提供了N/S/M/L/X尺度的不同大小模型,用于满足不同场景需求。YOLOv8骨干网络和Neck部分可能参考了YOLOv7 ELAN设计思想
·
项目背景
最近停在门前的车被人开走了,虽然有监控,但是看监控太麻烦了,于是想着框选一个区域用yolov8直接检测闯入到这个区域的所有目标,这样1ms一帧,很快就可以跑完一天的视频
用到的技术
- C++
- OpenCV
- Yolov8 + OnnxRuntime
yolov8介绍
- YOLOv8支持Pose和Segment,在使用TensorRT可以跑到1-2ms一帧
- YOLOv8提供了一个全新的SOTA模型,包括P5 640和P6 1280分辨率的目标检测网络和基于YOLACT的实例分割模型。
- YOLOv8和YOLOv5一样,基于缩放系数也提供了N/S/M/L/X尺度的不同大小模型,用于满足不同场景需求。
- YOLOv8骨干网络和Neck部分可能参考了YOLOv7 ELAN设计思想,将YOLOv5的C3结构换成了梯度流更丰富的C2f结构,并对不同尺度模型调整了不同的通道数。
- YOLOv8 Head部分相比YOLOv5改动较大,换成了目前主流的解耦头结构,将分类和检测头分离,同时也从Anchor-Based换成了Anchor-Free。
- YOLOv8 Loss计算方面采用了TaskAlignedAssigner正样本分配策略,并引入了Distribution Focal Loss。
- YOLOv8训练的数据增强部分引入了YOLOX中的最后10 epoch关闭Mosiac增强的操作,可以有效地提升精度。
实现步骤
- 首先打开视频第一帧,框选区域,我们直接使用opencv实现这个功能
- 加载模型检测画面中的所有对象
- 计算IOU,如果有重合就保存这一帧具体信息
- 跟踪闯入画面的目标,否则会重复保存信息
使用opencv打开视频,并框选区域
#include <opencv2/opencv.hpp>
#include "inference.h"
using namespace cv;
// 定义一个全局变量,用于存放鼠标框选的矩形区域
Rect g_rect;
// 定义一个全局变量,用于标记鼠标是否按下
bool g_bDrawingBox = false;
// 定义一个回调函数,用于处理鼠标事件
void on_MouseHandle(int event, int x, int y, int flags, void* param)
{
// 将param转换为Mat类型的指针
Mat& image = *(Mat*) param;
// 根据不同的鼠标事件进行处理
switch (event)
{
// 鼠标左键按下事件
case EVENT_LBUTTONDOWN:
{
// 标记鼠标已按下
g_bDrawingBox = true;
// 记录矩形框的起始点
g_rect.x = x;
g_rect.y = y;
break;
}
// 鼠标移动事件
case EVENT_MOUSEMOVE:
{
// 如果鼠标已按下,更新矩形框的宽度和高度
if (g_bDrawingBox)
{
g_rect.width = x - g_rect.x;
g_rect.height = y - g_rect.y;
}
break;
}
// 鼠标左键松开事件
case EVENT_LBUTTONUP:
{
// 标记鼠标已松开
g_bDrawingBox = false;
// 如果矩形框的宽度和高度为正,绘制矩形框到图像上
if (g_rect.width > 0 && g_rect.height > 0)
{
rectangle(image, g_rect, Scalar(0, 255, 0));
}
break;
}
}
}
int main(int argc, char* argv[])
{
// 读取视频文件
cv::VideoCapture vc;
vc.open(argv[1]);
if(vc.isOpened()){
cv::Mat frame;
vc >> frame;
if(!frame.empty()){
// 创建一个副本图像,用于显示框选过程
Mat temp;
frame.copyTo(temp);
// 创建一个窗口,显示图像
namedWindow("image");
// 设置鼠标回调函数,传入副本图像作为参数
setMouseCallback("image", on_MouseHandle, (void*)&temp);
while (1)
{
// 如果鼠标正在框选,绘制一个虚线矩形框到副本图像上,并显示框的大小和坐标
if (g_bDrawingBox)
{
temp.copyTo(frame);
rectangle(frame, g_rect, Scalar(0, 255, 0), 1, LINE_AA);
char text[32];
sprintf(text, "w=%d, h=%d", g_rect.width, g_rect.height);
putText(frame, text, Point(g_rect.x + 5, g_rect.y - 5), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0));
}
// 显示副本图像
imshow("image", frame);
// 等待按键,如果按下ESC键,退出循环
if (waitKey(10) == 27)
{
break;
}
}
while(!frame.empty()){
cv::imshow("image", frame);
cv::waitKey(1);
vc >> frame;
}
}
}
return 0;
}
使用YoloV8检测目标
inference.h
#pragma once
#define RET_OK nullptr
#ifdef _WIN32
#include <Windows.h>
#include <direct.h>
#include <io.h>
#endif
#include <string>
#include <vector>
#include <cstdio>
#include <opencv2/opencv.hpp>
#include "onnxruntime_cxx_api.h"
#ifdef USE_CUDA
#include <cuda_fp16.h>
#endif
enum MODEL_TYPE {
//FLOAT32 MODEL
YOLO_ORIGIN_V5 = 0,
YOLO_ORIGIN_V8 = 1,//only support v8 detector currently
YOLO_POSE_V8 = 2,
YOLO_CLS_V8 = 3,
YOLO_ORIGIN_V8_HALF = 4,
YOLO_POSE_V8_HALF = 5,
YOLO_CLS_V8_HALF = 6
};
typedef struct _DCSP_INIT_PARAM {
std::string ModelPath;
MODEL_TYPE ModelType = YOLO_ORIGIN_V8;
std::vector<int> imgSize = {640, 640};
float RectConfidenceThreshold = 0.6;
float iouThreshold = 0.5;
bool CudaEnable = false;
int LogSeverityLevel = 3;
int IntraOpNumThreads = 1;
} DCSP_INIT_PARAM;
typedef struct _DCSP_RESULT {
int classId;
float confidence;
cv::Rect box;
} DCSP_RESULT;
class DCSP_CORE {
public:
DCSP_CORE();
~DCSP_CORE();
public:
char *CreateSession(DCSP_INIT_PARAM &iParams);
char *RunSession(cv::Mat &iImg, std::vector<DCSP_RESULT> &oResult);
char *WarmUpSession();
template<typename N>
char *TensorProcess(clock_t &starttime_1, cv::Mat &iImg, N &blob, std::vector<int64_t> &inputNodeDims,
std::vector<DCSP_RESULT> &oResult);
std::vector<std::string> classes{};
private:
Ort::Env env;
Ort::Session *session;
bool cudaEnable;
Ort::RunOptions options;
std::vector<const char *> inputNodeNames;
std::vector<const char *> outputNodeNames;
MODEL_TYPE modelType;
std::vector<int> imgSize;
float rectConfidenceThreshold;
float iouThreshold;
};
inference.cpp
#include "inference.h"
#include <regex>
#define benchmark
DCSP_CORE::DCSP_CORE() {
}
DCSP_CORE::~DCSP_CORE() {
delete session;
}
#ifdef USE_CUDA
namespace Ort
{
template<>
struct TypeToTensorType<half> { static constexpr ONNXTensorElementDataType type = ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT16; };
}
#endif
template<typename T>
char *BlobFromImage(cv::Mat &iImg, T &iBlob) {
int channels = iImg.channels();
int imgHeight = iImg.rows;
int imgWidth = iImg.cols;
for (int c = 0; c < channels; c++) {
for (int h = 0; h < imgHeight; h++) {
for (int w = 0; w < imgWidth; w++) {
iBlob[c * imgWidth * imgHeight + h * imgWidth + w] = typename std::remove_pointer<T>::type(
(iImg.at<cv::Vec3b>(h, w)[c]) / 255.0f);
}
}
}
return RET_OK;
}
char *PostProcess(cv::Mat &iImg, std::vector<int> iImgSize, cv::Mat &oImg) {
cv::Mat img = iImg.clone();
cv::resize(iImg, oImg, cv::Size(iImgSize.at(0), iImgSize.at(1)));
if (img.channels() == 1) {
cv::cvtColor(oImg, oImg, cv::COLOR_GRAY2BGR);
}
cv::cvtColor(oImg, oImg, cv::COLOR_BGR2RGB);
return RET_OK;
}
char *DCSP_CORE::CreateSession(DCSP_INIT_PARAM &iParams) {
char *Ret = RET_OK;
std::regex pattern("[\u4e00-\u9fa5]");
bool result = std::regex_search(iParams.ModelPath, pattern);
if (result) {
Ret = "[DCSP_ONNX]:Model path error.Change your model path without chinese characters.";
std::cout << Ret << std::endl;
return Ret;
}
try {
rectConfidenceThreshold = iParams.RectConfidenceThreshold;
iouThreshold = iParams.iouThreshold;
imgSize = iParams.imgSize;
modelType = iParams.ModelType;
env = Ort::Env(ORT_LOGGING_LEVEL_WARNING, "Yolo");
Ort::SessionOptions sessionOption;
if (iParams.CudaEnable) {
cudaEnable = iParams.CudaEnable;
OrtCUDAProviderOptions cudaOption;
cudaOption.device_id = 0;
sessionOption.AppendExecutionProvider_CUDA(cudaOption);
}
sessionOption.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_ALL);
sessionOption.SetIntraOpNumThreads(iParams.IntraOpNumThreads);
sessionOption.SetLogSeverityLevel(iParams.LogSeverityLevel);
#ifdef _WIN32
int ModelPathSize = MultiByteToWideChar(CP_UTF8, 0, iParams.ModelPath.c_str(), static_cast<int>(iParams.ModelPath.length()), nullptr, 0);
wchar_t* wide_cstr = new wchar_t[ModelPathSize + 1];
MultiByteToWideChar(CP_UTF8, 0, iParams.ModelPath.c_str(), static_cast<int>(iParams.ModelPath.length()), wide_cstr, ModelPathSize);
wide_cstr[ModelPathSize] = L'\0';
const wchar_t* modelPath = wide_cstr;
#else
const char *modelPath = iParams.ModelPath.c_str();
#endif // _WIN32
session = new Ort::Session(env, modelPath, sessionOption);
Ort::AllocatorWithDefaultOptions allocator;
size_t inputNodesNum = session->GetInputCount();
for (size_t i = 0; i < inputNodesNum; i++) {
Ort::AllocatedStringPtr input_node_name = session->GetInputNameAllocated(i, allocator);
char *temp_buf = new char[50];
strcpy(temp_buf, input_node_name.get());
inputNodeNames.push_back(temp_buf);
}
size_t OutputNodesNum = session->GetOutputCount();
for (size_t i = 0; i < OutputNodesNum; i++) {
Ort::AllocatedStringPtr output_node_name = session->GetOutputNameAllocated(i, allocator);
char *temp_buf = new char[10];
strcpy(temp_buf, output_node_name.get());
outputNodeNames.push_back(temp_buf);
}
options = Ort::RunOptions{nullptr};
WarmUpSession();
return RET_OK;
}
catch (const std::exception &e) {
const char *str1 = "[DCSP_ONNX]:";
const char *str2 = e.what();
std::string result = std::string(str1) + std::string(str2);
char *merged = new char[result.length() + 1];
std::strcpy(merged, result.c_str());
std::cout << merged << std::endl;
delete[] merged;
return "[DCSP_ONNX]:Create session failed.";
}
}
char *DCSP_CORE::RunSession(cv::Mat &iImg, std::vector<DCSP_RESULT> &oResult) {
#ifdef benchmark
clock_t starttime_1 = clock();
#endif // benchmark
char *Ret = RET_OK;
cv::Mat processedImg;
PostProcess(iImg, imgSize, processedImg);
if (modelType < 4) {
float *blob = new float[processedImg.total() * 3];
BlobFromImage(processedImg, blob);
std::vector<int64_t> inputNodeDims = {1, 3, imgSize.at(0), imgSize.at(1)};
TensorProcess(starttime_1, iImg, blob, inputNodeDims, oResult);
} else {
#ifdef USE_CUDA
half* blob = new half[processedImg.total() * 3];
BlobFromImage(processedImg, blob);
std::vector<int64_t> inputNodeDims = { 1,3,imgSize.at(0),imgSize.at(1) };
TensorProcess(starttime_1, iImg, blob, inputNodeDims, oResult);
#endif
}
return Ret;
}
template<typename N>
char *DCSP_CORE::TensorProcess(clock_t &starttime_1, cv::Mat &iImg, N &blob, std::vector<int64_t> &inputNodeDims,
std::vector<DCSP_RESULT> &oResult) {
Ort::Value inputTensor = Ort::Value::CreateTensor<typename std::remove_pointer<N>::type>(
Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU), blob, 3 * imgSize.at(0) * imgSize.at(1),
inputNodeDims.data(), inputNodeDims.size());
#ifdef benchmark
clock_t starttime_2 = clock();
#endif // benchmark
auto outputTensor = session->Run(options, inputNodeNames.data(), &inputTensor, 1, outputNodeNames.data(),
outputNodeNames.size());
#ifdef benchmark
clock_t starttime_3 = clock();
#endif // benchmark
Ort::TypeInfo typeInfo = outputTensor.front().GetTypeInfo();
auto tensor_info = typeInfo.GetTensorTypeAndShapeInfo();
std::vector<int64_t> outputNodeDims = tensor_info.GetShape();
auto output = outputTensor.front().GetTensorMutableData<typename std::remove_pointer<N>::type>();
delete blob;
switch (modelType) {
case 1://V8_ORIGIN_FP32
case 4://V8_ORIGIN_FP16
{
int strideNum = outputNodeDims[2];
int signalResultNum = outputNodeDims[1];
std::vector<int> class_ids;
std::vector<float> confidences;
std::vector<cv::Rect> boxes;
cv::Mat rawData;
if (modelType == 1) {
// FP32
rawData = cv::Mat(signalResultNum, strideNum, CV_32F, output);
} else {
// FP16
rawData = cv::Mat(signalResultNum, strideNum, CV_16F, output);
rawData.convertTo(rawData, CV_32F);
}
rawData = rawData.t();
float *data = (float *) rawData.data;
float x_factor = iImg.cols / 640.;
float y_factor = iImg.rows / 640.;
for (int i = 0; i < strideNum; ++i) {
float *classesScores = data + 4;
cv::Mat scores(1, this->classes.size(), CV_32FC1, classesScores);
cv::Point class_id;
double maxClassScore;
cv::minMaxLoc(scores, 0, &maxClassScore, 0, &class_id);
if (maxClassScore > rectConfidenceThreshold) {
confidences.push_back(maxClassScore);
class_ids.push_back(class_id.x);
float x = data[0];
float y = data[1];
float w = data[2];
float h = data[3];
int left = int((x - 0.5 * w) * x_factor);
int top = int((y - 0.5 * h) * y_factor);
int width = int(w * x_factor);
int height = int(h * y_factor);
boxes.emplace_back(left, top, width, height);
}
data += signalResultNum;
}
std::vector<int> nmsResult;
cv::dnn::NMSBoxes(boxes, confidences, rectConfidenceThreshold, iouThreshold, nmsResult);
for (int i = 0; i < nmsResult.size(); ++i) {
int idx = nmsResult[i];
DCSP_RESULT result;
result.classId = class_ids[idx];
result.confidence = confidences[idx];
result.box = boxes[idx];
oResult.push_back(result);
}
#ifdef benchmark
clock_t starttime_4 = clock();
double pre_process_time = (double) (starttime_2 - starttime_1) / CLOCKS_PER_SEC * 1000;
double process_time = (double) (starttime_3 - starttime_2) / CLOCKS_PER_SEC * 1000;
double post_process_time = (double) (starttime_4 - starttime_3) / CLOCKS_PER_SEC * 1000;
if (cudaEnable) {
std::cout << "[DCSP_ONNX(CUDA)]: " << pre_process_time << "ms pre-process, " << process_time
<< "ms inference, " << post_process_time << "ms post-process." << std::endl;
} else {
std::cout << "[DCSP_ONNX(CPU)]: " << pre_process_time << "ms pre-process, " << process_time
<< "ms inference, " << post_process_time << "ms post-process." << std::endl;
}
#endif // benchmark
break;
}
}
return RET_OK;
}
char *DCSP_CORE::WarmUpSession() {
clock_t starttime_1 = clock();
cv::Mat iImg = cv::Mat(cv::Size(imgSize.at(0), imgSize.at(1)), CV_8UC3);
cv::Mat processedImg;
PostProcess(iImg, imgSize, processedImg);
if (modelType < 4) {
float *blob = new float[iImg.total() * 3];
BlobFromImage(processedImg, blob);
std::vector<int64_t> YOLO_input_node_dims = {1, 3, imgSize.at(0), imgSize.at(1)};
Ort::Value input_tensor = Ort::Value::CreateTensor<float>(
Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU), blob, 3 * imgSize.at(0) * imgSize.at(1),
YOLO_input_node_dims.data(), YOLO_input_node_dims.size());
auto output_tensors = session->Run(options, inputNodeNames.data(), &input_tensor, 1, outputNodeNames.data(),
outputNodeNames.size());
delete[] blob;
clock_t starttime_4 = clock();
double post_process_time = (double) (starttime_4 - starttime_1) / CLOCKS_PER_SEC * 1000;
if (cudaEnable) {
std::cout << "[DCSP_ONNX(CUDA)]: " << "Cuda warm-up cost " << post_process_time << " ms. " << std::endl;
}
} else {
#ifdef USE_CUDA
half* blob = new half[iImg.total() * 3];
BlobFromImage(processedImg, blob);
std::vector<int64_t> YOLO_input_node_dims = { 1,3,imgSize.at(0),imgSize.at(1) };
Ort::Value input_tensor = Ort::Value::CreateTensor<half>(Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU), blob, 3 * imgSize.at(0) * imgSize.at(1), YOLO_input_node_dims.data(), YOLO_input_node_dims.size());
auto output_tensors = session->Run(options, inputNodeNames.data(), &input_tensor, 1, outputNodeNames.data(), outputNodeNames.size());
delete[] blob;
clock_t starttime_4 = clock();
double post_process_time = (double)(starttime_4 - starttime_1) / CLOCKS_PER_SEC * 1000;
if (cudaEnable)
{
std::cout << "[DCSP_ONNX(CUDA)]: " << "Cuda warm-up cost " << post_process_time << " ms. " << std::endl;
}
#endif
}
return RET_OK;
}
main.cpp
int read_coco_yaml(DCSP_CORE *&p) {
// Open the YAML file
std::ifstream file("coco.yaml");
if (!file.is_open()) {
std::cerr << "Failed to open file" << std::endl;
return 1;
}
// Read the file line by line
std::string line;
std::vector<std::string> lines;
while (std::getline(file, line)) {
lines.push_back(line);
}
// Find the start and end of the names section
std::size_t start = 0;
std::size_t end = 0;
for (std::size_t i = 0; i < lines.size(); i++) {
if (lines[i].find("names:") != std::string::npos) {
start = i + 1;
} else if (start > 0 && lines[i].find(':') == std::string::npos) {
end = i;
break;
}
}
// Extract the names
std::vector<std::string> names;
for (std::size_t i = start; i < end; i++) {
std::stringstream ss(lines[i]);
std::string name;
std::getline(ss, name, ':'); // Extract the number before the delimiter
std::getline(ss, name); // Extract the string after the delimiter
names.push_back(name);
}
p->classes = names;
return 0;
}
int main(int argc, char* argv[])
{
DCSP_CORE *yoloDetector = new DCSP_CORE;
//std::string model_path = "yolov8n.onnx";
std::string model_path = argv[1];
read_coco_yaml(yoloDetector);
#ifdef USE_CUDA
// GPU FP32 inference
DCSP_INIT_PARAM params{ model_path, YOLO_ORIGIN_V8, {640, 640}, 0.1, 0.5, true };
// GPU FP16 inference
// DCSP_INIT_PARAM params{ model_path, YOLO_ORIGIN_V8_HALF, {640, 640}, 0.1, 0.5, true };
#else
// CPU inference
DCSP_INIT_PARAM params{model_path, YOLO_ORIGIN_V8, {640, 640}, 0.1, 0.5, false};
#endif
yoloDetector->CreateSession(params);
cv::VideoCapture vc;
vc.open(argv[2]);
if(vc.isOpened()){
cv::Mat frame;
vc >> frame;
while(!frame.empty()){
std::vector<DCSP_RESULT> res;
yoloDetector->RunSession(frame, res);
for (int i = 0; i < res.size(); ++i)
{
DCSP_RESULT detection = res[i];
cv::Rect box = detection.box;
cv::RNG rng(cv::getTickCount());
cv::Scalar color(rng.uniform(0, 256), rng.uniform(0, 256), rng.uniform(0, 256));;
// Detection box
cv::rectangle(frame, box, color, 2);
// Detection box text
std::string classString = yoloDetector->classes[detection.classId] + ' ' + std::to_string(detection.confidence).substr(0, 4);
cv::Size textSize = cv::getTextSize(classString, cv::FONT_HERSHEY_DUPLEX, 1, 2, 0);
cv::Rect textBox(box.x, box.y - 40, textSize.width + 10, textSize.height + 20);
cv::rectangle(frame, textBox, color, cv::FILLED);
cv::putText(frame, classString, cv::Point(box.x + 5, box.y - 10), cv::FONT_HERSHEY_DUPLEX, 1, cv::Scalar(0, 0, 0), 2, 0);
}
cv::rectangle(frame, g_rect, Scalar(0, 255, 0), 3, cv::LINE_AA);
cv::imshow("image", frame);
cv::waitKey(1);
vc >> frame;
}
}
}
opencv的框选区域和yolov8检测目标框融合
#include <opencv2/opencv.hpp>
#include <fstream>
#include "inference.h"
using namespace cv;
// 定义一个全局变量,用于存放鼠标框选的矩形区域
Rect g_rect;
// 定义一个全局变量,用于标记鼠标是否按下
bool g_bDrawingBox = false;
// 定义一个回调函数,用于处理鼠标事件
void on_MouseHandle(int event, int x, int y, int flags, void* param)
{
// 将param转换为Mat类型的指针
Mat& image = *(Mat*) param;
// 根据不同的鼠标事件进行处理
switch (event)
{
// 鼠标左键按下事件
case EVENT_LBUTTONDOWN:
{
// 标记鼠标已按下
g_bDrawingBox = true;
// 记录矩形框的起始点
g_rect.x = x;
g_rect.y = y;
break;
}
// 鼠标移动事件
case EVENT_MOUSEMOVE:
{
// 如果鼠标已按下,更新矩形框的宽度和高度
if (g_bDrawingBox)
{
g_rect.width = x - g_rect.x;
g_rect.height = y - g_rect.y;
}
break;
}
// 鼠标左键松开事件
case EVENT_LBUTTONUP:
{
// 标记鼠标已松开
g_bDrawingBox = false;
// 如果矩形框的宽度和高度为正,绘制矩形框到图像上
if (g_rect.width > 0 && g_rect.height > 0)
{
rectangle(image, g_rect, Scalar(0, 255, 0));
}
break;
}
}
}
int read_coco_yaml(DCSP_CORE *&p) {
// Open the YAML file
std::ifstream file("coco.yaml");
if (!file.is_open()) {
std::cerr << "Failed to open file" << std::endl;
return 1;
}
// Read the file line by line
std::string line;
std::vector<std::string> lines;
while (std::getline(file, line)) {
lines.push_back(line);
}
// Find the start and end of the names section
std::size_t start = 0;
std::size_t end = 0;
for (std::size_t i = 0; i < lines.size(); i++) {
if (lines[i].find("names:") != std::string::npos) {
start = i + 1;
} else if (start > 0 && lines[i].find(':') == std::string::npos) {
end = i;
break;
}
}
// Extract the names
std::vector<std::string> names;
for (std::size_t i = start; i < end; i++) {
std::stringstream ss(lines[i]);
std::string name;
std::getline(ss, name, ':'); // Extract the number before the delimiter
std::getline(ss, name); // Extract the string after the delimiter
names.push_back(name);
}
p->classes = names;
return 0;
}
int main(int argc, char* argv[])
{
// 读取原始图像
// Mat src = imread(argv[1]);
DCSP_CORE *yoloDetector = new DCSP_CORE;
//std::string model_path = "yolov8n.onnx";
std::string model_path = argv[1];
read_coco_yaml(yoloDetector);
#ifdef USE_CUDA
// GPU FP32 inference
DCSP_INIT_PARAM params{ model_path, YOLO_ORIGIN_V8, {640, 640}, 0.1, 0.5, true };
// GPU FP16 inference
// DCSP_INIT_PARAM params{ model_path, YOLO_ORIGIN_V8_HALF, {640, 640}, 0.1, 0.5, true };
#else
// CPU inference
DCSP_INIT_PARAM params{model_path, YOLO_ORIGIN_V8, {640, 640}, 0.1, 0.5, false};
#endif
yoloDetector->CreateSession(params);
cv::VideoCapture vc;
vc.open(argv[2]);
if(vc.isOpened()){
cv::Mat frame;
vc >> frame;
if(!frame.empty()){
// 创建一个副本图像,用于显示框选过程
Mat temp;
frame.copyTo(temp);
// 创建一个窗口,显示图像
namedWindow("image");
// 设置鼠标回调函数,传入副本图像作为参数
setMouseCallback("image", on_MouseHandle, (void*)&temp);
while (1)
{
// 如果鼠标正在框选,绘制一个虚线矩形框到副本图像上,并显示框的大小和坐标
if (g_bDrawingBox)
{
temp.copyTo(frame);
rectangle(frame, g_rect, Scalar(0, 255, 0), 1, LINE_AA);
char text[32];
sprintf(text, "w=%d, h=%d", g_rect.width, g_rect.height);
putText(frame, text, Point(g_rect.x + 5, g_rect.y - 5), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0));
}
// 显示副本图像
imshow("image", frame);
// 等待按键,如果按下ESC键,退出循环
if (waitKey(10) == 27)
{
break;
}
}
while(!frame.empty()){
std::vector<DCSP_RESULT> res;
yoloDetector->RunSession(frame, res);
for (int i = 0; i < res.size(); ++i)
{
DCSP_RESULT detection = res[i];
cv::Rect box = detection.box;
cv::RNG rng(cv::getTickCount());
cv::Scalar color(rng.uniform(0, 256), rng.uniform(0, 256), rng.uniform(0, 256));;
// Detection box
cv::rectangle(frame, box, color, 2);
// Detection box text
std::string classString = yoloDetector->classes[detection.classId] + ' ' + std::to_string(detection.confidence).substr(0, 4);
cv::Size textSize = cv::getTextSize(classString, cv::FONT_HERSHEY_DUPLEX, 1, 2, 0);
cv::Rect textBox(box.x, box.y - 40, textSize.width + 10, textSize.height + 20);
cv::rectangle(frame, textBox, color, cv::FILLED);
cv::putText(frame, classString, cv::Point(box.x + 5, box.y - 10), cv::FONT_HERSHEY_DUPLEX, 1, cv::Scalar(0, 0, 0), 2, 0);
}
cv::rectangle(frame, g_rect, Scalar(0, 255, 0), 3, cv::LINE_AA);
cv::imshow("image", frame);
cv::waitKey(1);
vc >> frame;
}
}
}
return 0;
}
计算预警区域和目标框重合度
double calIou(const cv::Rect& rc1, const cv::Rect& rc2)
{
cv::Rect intersection = rc1 & rc2;
if (!intersection.empty()) {
double intersectionArea = intersection.width * intersection.height;
double rect1Area = rc1.width * rc1.height;
double rect2Area = rc2.width * rc2.height;
// 计算IOU
double iou = intersectionArea / (rect1Area + rect2Area - intersectionArea);
return iou;
} else {
// 没有重叠,IOU为0
return 0.0;
}
}
跟踪实现
不断的去循环激活的目标,来过滤掉重复的代码,这块以后实现
完整代码
#include <opencv2/opencv.hpp>
#include <fstream>
#include "inference.h"
using namespace cv;
// 定义一个全局变量,用于存放鼠标框选的矩形区域
Rect g_rect;
// 定义一个全局变量,用于标记鼠标是否按下
bool g_bDrawingBox = false;
// 定义一个回调函数,用于处理鼠标事件
void on_MouseHandle(int event, int x, int y, int flags, void* param)
{
// 将param转换为Mat类型的指针
Mat& image = *(Mat*) param;
// 根据不同的鼠标事件进行处理
switch (event)
{
// 鼠标左键按下事件
case EVENT_LBUTTONDOWN:
{
// 标记鼠标已按下
g_bDrawingBox = true;
// 记录矩形框的起始点
g_rect.x = x;
g_rect.y = y;
break;
}
// 鼠标移动事件
case EVENT_MOUSEMOVE:
{
// 如果鼠标已按下,更新矩形框的宽度和高度
if (g_bDrawingBox)
{
g_rect.width = x - g_rect.x;
g_rect.height = y - g_rect.y;
}
break;
}
// 鼠标左键松开事件
case EVENT_LBUTTONUP:
{
// 标记鼠标已松开
g_bDrawingBox = false;
// 如果矩形框的宽度和高度为正,绘制矩形框到图像上
if (g_rect.width > 0 && g_rect.height > 0)
{
rectangle(image, g_rect, Scalar(0, 255, 0));
}
break;
}
}
}
int read_coco_yaml(DCSP_CORE *&p) {
// Open the YAML file
std::ifstream file("coco.yaml");
if (!file.is_open()) {
std::cerr << "Failed to open file" << std::endl;
return 1;
}
// Read the file line by line
std::string line;
std::vector<std::string> lines;
while (std::getline(file, line)) {
lines.push_back(line);
}
// Find the start and end of the names section
std::size_t start = 0;
std::size_t end = 0;
for (std::size_t i = 0; i < lines.size(); i++) {
if (lines[i].find("names:") != std::string::npos) {
start = i + 1;
} else if (start > 0 && lines[i].find(':') == std::string::npos) {
end = i;
break;
}
}
// Extract the names
std::vector<std::string> names;
for (std::size_t i = start; i < end; i++) {
std::stringstream ss(lines[i]);
std::string name;
std::getline(ss, name, ':'); // Extract the number before the delimiter
std::getline(ss, name); // Extract the string after the delimiter
names.push_back(name);
}
p->classes = names;
return 0;
}
double calIou(const cv::Rect& rc1, const cv::Rect& rc2)
{
cv::Rect intersection = rc1 & rc2;
if (!intersection.empty()) {
double intersectionArea = intersection.width * intersection.height;
double rect1Area = rc1.width * rc1.height;
double rect2Area = rc2.width * rc2.height;
// 计算IOU
double iou = intersectionArea / (rect1Area + rect2Area - intersectionArea);
return iou;
} else {
// 没有重叠,IOU为0
return 0.0;
}
}
int main(int argc, char* argv[])
{
// 读取原始图像
// Mat src = imread(argv[1]);
DCSP_CORE *yoloDetector = new DCSP_CORE;
//std::string model_path = "yolov8n.onnx";
std::string model_path = argv[1];
read_coco_yaml(yoloDetector);
#ifdef USE_CUDA
// GPU FP32 inference
DCSP_INIT_PARAM params{ model_path, YOLO_ORIGIN_V8, {640, 640}, 0.1, 0.5, true };
// GPU FP16 inference
// DCSP_INIT_PARAM params{ model_path, YOLO_ORIGIN_V8_HALF, {640, 640}, 0.1, 0.5, true };
#else
// CPU inference
DCSP_INIT_PARAM params{model_path, YOLO_ORIGIN_V8, {640, 640}, 0.1, 0.5, false};
#endif
yoloDetector->CreateSession(params);
cv::VideoCapture vc;
vc.open(argv[2]);
if(vc.isOpened()){
cv::Mat frame;
vc >> frame;
if(!frame.empty()){
// 创建一个副本图像,用于显示框选过程
Mat temp;
frame.copyTo(temp);
// 创建一个窗口,显示图像
namedWindow("image");
// 设置鼠标回调函数,传入副本图像作为参数
setMouseCallback("image", on_MouseHandle, (void*)&temp);
while (1)
{
// 如果鼠标正在框选,绘制一个虚线矩形框到副本图像上,并显示框的大小和坐标
if (g_bDrawingBox)
{
temp.copyTo(frame);
rectangle(frame, g_rect, Scalar(0, 255, 0), 1, LINE_AA);
char text[32];
sprintf(text, "w=%d, h=%d", g_rect.width, g_rect.height);
putText(frame, text, Point(g_rect.x + 5, g_rect.y - 5), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0));
}
// 显示副本图像
imshow("image", frame);
// 等待按键,如果按下ESC键,退出循环
if (waitKey(10) == 27)
{
break;
}
}
while(!frame.empty()){
std::vector<DCSP_RESULT> res;
yoloDetector->RunSession(frame, res);
for (int i = 0; i < res.size(); ++i)
{
DCSP_RESULT detection = res[i];
cv::Rect box = detection.box;
cv::RNG rng(cv::getTickCount());
cv::Scalar color(rng.uniform(0, 256), rng.uniform(0, 256), rng.uniform(0, 256));;
// Detection box
cv::rectangle(frame, box, color, 2);
// Detection box text
std::string classString = yoloDetector->classes[detection.classId] + ' ' + std::to_string(detection.confidence).substr(0, 4);
cv::Size textSize = cv::getTextSize(classString, cv::FONT_HERSHEY_DUPLEX, 1, 2, 0);
cv::Rect textBox(box.x, box.y - 40, textSize.width + 10, textSize.height + 20);
cv::rectangle(frame, textBox, color, cv::FILLED);
cv::putText(frame, classString, cv::Point(box.x + 5, box.y - 10), cv::FONT_HERSHEY_DUPLEX, 1, cv::Scalar(0, 0, 0), 2, 0);
double iou = calIou(g_rect, box);
if(iou > 0)
std::cout << "iou:" << iou << std::endl;
}
cv::rectangle(frame, g_rect, Scalar(0, 255, 0), 3, cv::LINE_AA);
cv::imshow("image", frame);
cv::waitKey(1);
vc >> frame;
}
}
}
return 0;
}
参考
更多推荐
已为社区贡献6条内容
所有评论(0)