LangChain-v0.2文档翻译:3.3、如何从模型返回结构化数据
import re# Prompt"system",),Returns:""")```"try:Returns:Returns:扩展知识LangChain:是一个用于构建AI助手和应用程序的Python库,提供了与不同AI模型交互的接口。OpenAI API:是由OpenAI公司提供的API服务,允许开发者在自己的应用程序中使用预训练的AI模型。Pydantic:是一个用于数据验证和配置管理的Py
在很多情况下,我们希望模型能够返回符合特定模式的输出。例如,从文本中提取数据以插入到数据库或用于其他下游系统。本指南涵盖了几种从模型获取结构化输出的策略。
.with_structured_output()
方法
这是获取结构化输出最简单也是最可靠的方法。with_structured_output()
方法适用于那些提供原生API以结构化输出的模型,例如工具/函数调用或JSON模式,并在背后利用这些能力。
这个方法接受一个模式作为输入,该模式定义了所需输出属性的名称、类型和描述。返回的是一个模型类的实例,但它不输出字符串或消息,而是输出与给定模式相对应的对象。模式可以指定为JSON Schema
或Pydantic
类。如果使用JSON Schema
,则返回的是一个字典;如果使用Pydantic
类,则返回的是Pydantic
对象。
以下是使用该方法的一个示例,让模型生成一个关于猫的笑话,并将铺垫(setup)与结尾(punchline)分开:
# 安装LangChain OpenAI库
# pip install -qU langchain-openai
# 导入必要的库
import getpass
import os
from langchain_openai import ChatOpenAI
from typing import Optional
from langchain_core.pydantic_v1 import BaseModel, Field
# 设置环境变量以存储OpenAI的API密钥
os.environ["OPENAI_API_KEY"] = getpass.getpass()
# 创建ChatOpenAI的实例,指定使用的模型版本
llm = ChatOpenAI(model="gpt-3.5-turbo-0125")
# 定义Joke类,用于指定输出的结构
class Joke(BaseModel):
"""要告诉用户的笑话。"""
setup: str = Field(description="笑话的铺垫")
punchline: str = Field(description="笑话的结尾")
rating: Optional[int] = Field(description="笑话的有趣程度,从1到10")
# 使用with_structured_output方法来获取结构化的输出
structured_llm = llm.with_structured_output(Joke)
# 调用模型并传入提示,获取结构化的笑话输出
joke_response = structured_llm.invoke("Tell me a joke about cats")
print(joke_response)
输出示例:
Joke(setup='Why was the cat sitting on the computer?', punchline='To keep an eye on the mouse!', rating=None)
除了 Pydantic 类的结构之外,Pydantic 类的名称、文档字符串以及参数的名称和提供的描述也非常重要。大多数时候都with_structured_output在使用模型的函数/工具调用 API,您可以有效地将所有这些信息视为添加到模型提示中。
JSON Schema 字典的使用
除了使用 Pydantic 类之外,我们也可以选择使用 JSON Schema 字典来定义输出的结构。在这种情况下,响应也将以字典的形式返回:
# 定义 JSON Schema 字典来描述期望的输出结构
json_schema = {
"title": "joke",
"description": "Joke to tell user.",
"type": "object",
"properties": {
"setup": {
"type": "string",
"description": "The setup of the joke"
},
"punchline": {
"type": "string",
"description": "The punchline to the joke"
},
"rating": {
"type": "integer",
"description": "How funny the joke is, from 1 to 10"
}
},
"required": ["setup", "punchline"]
}
# 使用 JSON Schema 字典获取结构化输出
structured_llm = llm.with_structured_output(json_schema)
# 调用模型并获取结构化的笑话输出
joke_response = structured_llm.invoke("Tell me a joke about cats")
print(joke_response)
输出示例:
{'setup': 'Why was the cat sitting on the computer?',
'punchline': 'Because it wanted to keep an eye on the mouse!',
'rating': 8}
选择多个模式
要让模型从多个模式中选择,可以创建一个父 Pydantic 类,其中包含一个 Union 类型的属性:
from typing import Union
# 定义 ConversationalResponse 类
class ConversationalResponse(BaseModel):
"""以对话方式回应用户查询,友好且有帮助。"""
response: str = Field(description="对用户查询的对话式回应")
# 定义 Response 类,其中 output 属性是 Joke 或 ConversationalResponse 的联合类型
class Response(BaseModel):
output: Union[Joke, ConversationalResponse]
# 使用 Response 类获取结构化输出
structured_llm = llm.with_structured_output(Response)
# 调用模型并获取不同类型的结构化输出
joke_response = structured_llm.invoke("Tell me a joke about cats")
print(joke_response)
conversation_response = structured_llm.invoke("How are you today?")
print(conversation_response)
输出示例:
Response(output=Joke(setup='Why was the cat sitting on the computer?', punchline='To keep an eye on the mouse!', rating=8))
Response(output=ConversationalResponse(response="I'm just a digital assistant, so I don't have feelings, but I'm here and ready to help you. How can I assist you today?"))
流式传输(Streaming)
我们可以从我们的结构化模型流式传输输出,当输出类型是字典时(即,当模式被指定为JSON Schema字典时)。
# 使用 JSON Schema 字典获取结构化输出
structured_llm = llm.with_structured_output(json_schema)
# 流式传输输出
for chunk in structured_llm.stream("Tell me a joke about cats"):
print(chunk)
输出示例(逐步打印输出的每个部分):
{} # 初始为空,表示开始接收数据
{}
{'setup': ''}
{'setup': 'Why'}
{'setup': 'Why was'}
{'setup': 'Why was the'}
{'setup': 'Why was the cat'}
{'setup': 'Why was the cat sitting'}
{'setup': 'Why was the cat sitting on'}
{'setup': 'Why was the cat sitting on the'}
{'setup': 'Why was the cat sitting on the computer'}
{'setup': 'Why was the cat sitting on the computer?'}
{'setup': 'Why was the cat sitting on the computer?', 'punchline': ''}
{'setup': 'Why was the cat sitting on the computer?', 'punchline': 'Because'}
{'setup': 'Why was the cat sitting on the computer?', 'punchline': 'Because it'}
{'setup': 'Why was the cat sitting on the computer?', 'punchline': 'Because it wanted'}
{'setup': 'Why was the cat sitting on the computer?', 'punchline': 'Because it wanted to'}
{'setup': 'Why was the cat sitting on the computer?', 'punchline': 'Because it wanted to keep'}
{'setup': 'Why was the cat sitting on the computer?', 'punchline': 'Because it wanted to keep an'}
{'setup': 'Why was the cat sitting on the computer?', 'punchline': 'Because it wanted to keep an eye'}
{'setup': 'Why was the cat sitting on the computer?', 'punchline': 'Because it wanted to keep an eye on'}
{'setup': 'Why was the cat sitting on the computer?', 'punchline': 'Because it wanted to keep an eye on the'}
{'setup': 'Why was the cat sitting on the computer?', 'punchline': 'Because it wanted to keep an eye on the mouse'}
{'setup': 'Why was the cat sitting on the computer?', 'punchline': 'Because it wanted to keep an eye on the mouse!'}
{'setup': 'Why was the cat sitting on the computer?', 'punchline': 'Because it wanted to keep an eye on the mouse!', 'rating': 8}
少样本提示(Few-shot prompting)
对于更复杂的模式,添加少样本示例到提示中非常有用。最简单的方法是在提示中添加系统消息的例子:
from langchain_core.prompts import ChatPromptTemplate
# 定义系统消息,包含少样本示例
system = """
You are a hilarious comedian. Your specialty is knock-knock jokes.
Return a joke which has the setup (the response to "Who's there?") and the final punchline (the response to "<setup> who?").
Here are some examples of jokes:
example_user: Tell me a joke about planes
example_assistant: {"setup": "Why don't planes ever get tired?", "punchline": "Because they have rest wings!", "rating": 2}
example_user: Tell me another joke about planes
example_assistant: {"setup": "Cargo", "punchline": "Cargo 'vroom vroom', but planes go 'zoom zoom'!", "rating": 10}
example_user: Now about caterpillars
example_assistant: {"setup": "Caterpillar", "punchline": "Caterpillar really slow, but watch me turn into a butterfly and steal the show!", "rating": 5}
"""
# 创建提示模板
prompt = ChatPromptTemplate.from_messages([
("system", system),
("human", "{input}")])
# 结合少样本提示和结构化输出
few_shot_structured_llm = prompt | structured_llm
# 调用模型并获取结构化的笑话输出
response = few_shot_structured_llm.invoke("what's something funny about woodpeckers")
print(response)
输出示例:
{'setup': 'Woodpecker', 'punchline': "Woodpecker goes 'knock knock', but don't worry, they never expect you to answer the door!", 'rating': 8}
当构造输出的底层方法是工具调用时,我们可以将示例作为显式工具调用传入。您可以在 API 参考中检查所使用的模型是否使用工具调用。
from langchain_core.messages import AIMessage, HumanMessage, ToolMessage
examples = [
HumanMessage("Tell me a joke about planes", name="example_user"),
AIMessage(
"",
name="example_assistant",
tool_calls=[
{
"name": "joke",
"args": {
"setup": "Why don't planes ever get tired?",
"punchline": "Because they have rest wings!",
"rating": 2,
},
"id": "1",
}
],
),
# Most tool-calling models expect a ToolMessage(s) to follow an AIMessage with tool calls.
ToolMessage("", tool_call_id="1"),
# Some models also expect an AIMessage to follow any ToolMessages,
# so you may need to add an AIMessage here.
HumanMessage("Tell me another joke about planes", name="example_user"),
AIMessage(
"",
name="example_assistant",
tool_calls=[
{
"name": "joke",
"args": {
"setup": "Cargo",
"punchline": "Cargo 'vroom vroom', but planes go 'zoom zoom'!",
"rating": 10,
},
"id": "2",
}
],
),
ToolMessage("", tool_call_id="2"),
HumanMessage("Now about caterpillars", name="example_user"),
AIMessage(
"",
tool_calls=[
{
"name": "joke",
"args": {
"setup": "Caterpillar",
"punchline": "Caterpillar really slow, but watch me turn into a butterfly and steal the show!",
"rating": 5,
},
"id": "3",
}
],
),
ToolMessage("", tool_call_id="3"),
]
system = """You are a hilarious comedian. Your specialty is knock-knock jokes. \
Return a joke which has the setup (the response to "Who's there?") \
and the final punchline (the response to "<setup> who?")."""
prompt = ChatPromptTemplate.from_messages(
[("system", system), ("placeholder", "{examples}"), ("human", "{input}")]
)
few_shot_structured_llm = prompt | structured_llm
few_shot_structured_llm.invoke({"input": "crocodiles", "examples": examples})
{'setup': 'Crocodile',
'punchline': "Crocodile 'see you later', but in a while, it becomes an alligator!",
'rating': 7}
(高级) 指定结构化输出的方法
对于支持多种结构化输出方式的模型(即,它们同时支持工具调用和JSON模式),您可以使用 method=
参数指定使用哪种方法。
JSON模式
如果使用JSON模式,您需要在模型提示中指定所需的模式。传递给 with_structured_output
的模式仅用于解析模型输出,而不会像工具调用那样传递给模型。
# 指定使用JSON模式
structured_llm = llm.with_structured_output(Joke, method="json_mode")
# 调用模型并指示以JSON格式返回笑话
response = structured_llm.invoke(
"Tell me a joke about cats, respond in JSON with `setup` and `punchline` keys"
)
print(response)
输出示例:
Joke(setup='Why was the cat sitting on the computer?', punchline='Because it wanted to keep an eye on the mouse!', rating=None)
直接提示和解析模型
不是所有模型都支持 .with_structured_output()
,因为不是所有模型都有工具调用或JSON模式支持。对于这些模型,您需要直接提示模型使用特定格式,并使用输出解析器从原始模型输出中提取结构化响应。
使用 PydanticOutputParser
以下示例使用内置的 PydanticOutputParser
来解析被提示匹配给定Pydantic模式的聊天模型的输出。注意,我们直接在提示中添加了 format_instructions
。
from langchain_core.output_parsers import PydanticOutputParser
from langchain_core.prompts import ChatPromptTemplate
# 定义Person和People类,用于输出解析
class Person(BaseModel):
"""关于一个人的信息。"""
name: str = Field(..., description="人的名字")
height_in_meters: float = Field(..., description="人的高度,以米为单位")
class People(BaseModel):
"""文本中所有人的识别信息。"""
people: List[Person]
# 设置解析器
parser = PydanticOutputParser(pydantic_object=People)
# 创建提示
prompt = ChatPromptTemplate.from_messages([
(
"system",
"Answer the user query. Wrap the output in `json` tags {format_instructions}",
),
("human", "{query}"),
]).partial(format_instructions=parser.get_format_instructions())
# 调用模型并解析输出
query = "Anna is 23 years old and she is 6 feet tall"
print(prompt.invoke(query).to_string())
输出示例:
System: Answer the user query. Wrap the output in `json` tags
The output should be formatted as a JSON instance that conforms to the JSON schema below.
As an example, for the schema {"properties": {"foo": {"title": "Foo", "description": "a list of strings", "type": "array", "items": {"type": "string"}}}, "required": ["foo"]}
the object {"foo": ["bar", "baz"]} is a well-formatted instance of the schema. The object {"properties": {"foo": ["bar", "baz"]}} is not well-formatted.
Here is the output schema:
{“description”: “识别文本中所有人物的信息。”, “properties”: {“people”: {“title”: “人物”, “type”: “array”, “items”: {“$ref”: “#/definitions/Person”}}}, “required”: [“people”] , “definitions”: {“Person”: {“title”: “人物”, “description”: “关于人物的信息。”, “type”: “object”, “properties”: {“name”: {“title”: “姓名”, “description”: “人物的姓名”, “type”: “string”}, “height_in_meters”: {“title”: “身高(米)”, “description”: “以米为单位的人物身高。”, “type”: “number”}}, “required”: [“name”, “height_in_meters”] }}}
Human: Anna is 23 years old and she is 6 feet tall
现在让我们调用它:
chain = prompt | llm | parser
chain.invoke({"query": query})
People(people=[Person(name='Anna', height_in_meters=1.8288)])
创建自定义提示和解析器
您还可以使用LangChain 表达语言 (LCEL)创建自定义提示和解析器,使用普通函数来解析模型的输出:
import json
import re
from typing import List
from langchain_core.messages import AIMessage
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.pydantic_v1 import BaseModel, Field
class Person(BaseModel):
"""Information about a person."""
name: str = Field(..., description="The name of the person")
height_in_meters: float = Field(
..., description="The height of the person expressed in meters."
)
class People(BaseModel):
"""Identifying information about all people in a text."""
people: List[Person]
# Prompt
prompt = ChatPromptTemplate.from_messages(
[
(
"system",
"Answer the user query. Output your answer as JSON that "
"matches the given schema: ```json\n{schema}\n```. "
"Make sure to wrap the answer in ```json and ```tags",
),
("human", "{query}"),
]
).partial(schema=People.schema())
# Custom parser
def extract_json(message: AIMessage) -> List[dict]:
"""Extracts JSON content from a string where JSON is embedded between ```json and ```tags.
Parameters:
text (str): The text containing the JSON content.
Returns:
list: A list of extracted JSON strings.
"""
text = message.content
# Define the regular expression pattern to match JSON blocks
pattern = r"```json(.*?)```"
# Find all non-overlapping matches of the pattern in the string
matches = re.findall(pattern, text, re.DOTALL)
# Return the list of matched JSON strings, stripping any leading or trailing whitespace
try:
return [json.loads(match.strip()) for match in matches]
except Exception:
raise ValueError(f"Failed to parse: {message}")
这是发送给模型的提示:
query = "Anna is 23 years old and she is 6 feet tall"
print(prompt.format_prompt(query=query).to_string())
System: Answer the user query. Output your answer as JSON that matches the given schema: ```json
{'title': 'People', 'description': 'Identifying information about all people in a text.', 'type': 'object', 'properties': {'people': {'title': 'People', 'type': 'array', 'items': {'$ref': '#/definitions/Person'}}}, 'required': ['people'], 'definitions': {'Person': {'title': 'Person', 'description': 'Information about a person.', 'type': 'object', 'properties': {'name': {'title': 'Name', 'description': 'The name of the person', 'type': 'string'}, 'height_in_meters': {'title': 'Height In Meters', 'description': 'The height of the person expressed in meters.', 'type': 'number'}}, 'required': ['name', 'height_in_meters']}}}
```. Make sure to wrap the answer in ```json and ```tags
Human: Anna is 23 years old and she is 6 feet tall
当我们调用它时它看起来是这样的:
chain = prompt | llm | extract_json
chain.invoke({"query": query})
[{'people': [{'name': 'Anna', 'height_in_meters': 1.8288}]}]
扩展知识:
- LangChain:是一个用于构建AI助手和应用程序的Python库,提供了与不同AI模型交互的接口。
- OpenAI API:是由OpenAI公司提供的API服务,允许开发者在自己的应用程序中使用预训练的AI模型。
- Pydantic:是一个用于数据验证和配置管理的Python库,它使用Python类型注解来验证输入数据,并提供了丰富的数据验证功能。
- Union 类型:在 Python 类型注解中,Union 用于指示一个位置可以是多种类型之一。
- 继承与多态:在面向对象编程中,继承允许新创建的类(子类)继承现有类(父类)的属性和方法。多态性是指对象可以有多种形式,允许不同类的对象对同一消息做出响应,但具体形式取决于对象的实际类型。
- 流式处理:是一种数据处理方式,允许逐步处理数据流,而不是一次性处理整个数据集。
- 少样本学习(Few-shot learning):是一种机器学习范式,其中模型试图从少量的样本中学习并泛化到新的情境。
- 输出解析器(Output Parser):是一个工具,用于从模型的原始输出中提取结构化数据。
- JSON模式:用于定义和描述JSON数据结构的模式,有助于验证和解析JSON数据。
更多推荐
所有评论(0)