python字符串匹配算法_[转载] Python的字符串相似度检测
算法说明1). Levenshtein.hamming(str1, str2)计算汉明距离。要求str1和str2必须长度一致。是描述两个等长字串之间对应 位置上不同字符的个数。2). Levenshtein.distance(str1, str2)计算编辑距离(也称为 Levenshtein距离)。是描述由一个字串转化成另一个字串最少的操作次数,在其中的操作包括插入、删除、替换。算法实现参考动态
算法说明
1). Levenshtein.hamming(str1, str2)
计算汉明距离。要求str1和str2必须长度一致。是描述两个等长字串之间对应 位置上不同字符的个数。
2). Levenshtein.distance(str1, str2)
计算编辑距离(也称为 Levenshtein距离)。是描述由一个字串转化成另一个字串最少的操作次数,在其中的操作包括插入、删除、替换。
算法实现参考动态规划整理。
3). Levenshtein.ratio(str1, str2)
计算莱文斯坦比。计算公式r = (sum - ldist) / sum, 其中sum是指str1 和 str2 字串的长度总和,ldist是 类编辑距离
注意 :这里的类编辑距离不是2中所说的编辑距离,2中三种操作中每个操作+1,而在此处,删除、插入依然+1,但是替换+2
这样设计的目的:ratio('a', 'c'),sum=2, 按2中计算为(2-1)/2 = 0.5,’a','c'没有重合,显然不合算,但是替换操作+2,就可以解决这个问题。
4). Levenshtein.jaro(s1 , s2 )
计算jaro距离,
其中的 m 为s1 , s2的匹配长度,当某位置的认为匹配当该位置字符相同,或者在不超过
t是调换次数的一半
5.) Levenshtein.jaro_winkler(s 1 , s 2 )
计算 Jaro–Winkler距离:
更多推荐
所有评论(0)