完全背包问题python_完全背包问题
AcWing 3. 完全背包问题算法1枚举python 代码import sysdef solve(n, t, w, v):ans = [[0 for i in range(t + 1)] for i in range(n + 1)]for i in range(1, n + 1):for j in range(1, t + 1):tem = int(j/w[i]) + 1for k in ran
AcWing 3. 完全背包问题
算法1
枚举
python 代码
import sys
def solve(n, t, w, v):
ans = [[0 for i in range(t + 1)] for i in range(n + 1)]
for i in range(1, n + 1):
for j in range(1, t + 1):
tem = int(j/w[i]) + 1
for k in range(tem):
ans[i][j] = max(max(ans[i-1][j], ans[i-1][j-k*w[i]] + k*v[i]), ans[i][j])
return ans
if __name__ == '__main__':
n, t = map(int, input().strip().split())
w = [0 for i in range(n + 1)]
v = [0 for i in range(n + 1)]
for i in range(1, n + 1):
w[i], v[i] = map(int, input().strip().split())
ans = solve(n, t, w, v)
print(ans[n][t])
C++ 代码
#include
#include
#include
#include
using namespace std;
int main()
{
int n, t, w[1010], v[1010], ans[1010][1010];
cin >> n >> t;
for (int i = 1; i <= n; ++i){
cin >> w[i] >> v[i];
}
memset(ans, 0, sizeof(ans));
for(int i = 1; i <= n; ++i){
for(int j = 1; j <= t; ++j){
int tem = j/w[i];
for(int k = 0; k <= tem; ++k){
ans[i][j] = max(max(ans[i - 1][j], ans[i - 1][j - k*w[i]] + k*v[i]), ans[i][j]);
}
// cout << ans[i][j] << " ";
}
// cout << endl;
}
cout << ans[n][t];
return 0;
}
算法2
一种很巧妙的优化,完全背包,当前物品尽可能多放,持续寻找最优解
python 代码
import sys
def solve(n, t, w, v):
ans = [0 for i in range(t + 1)]
for i in range(1, n + 1):
for j in range(w[i], t + 1):
ans[j] = max(ans[j], ans[j - w[i]] + v[i])
return ans[t]
if __name__ == '__main__':
n, t = map(int, input().strip().split())
w = [0 for i in range(n + 1)]
v = [0 for i in range(n + 1)]
for i in range(1, n + 1):
w[i], v[i] = map(int, input().strip().split())
print(solve(n, t, w, v))
更多推荐
所有评论(0)