【Python数据分析】AAARR模型实现
一、通用的漏斗图from pyecharts import options as optsfrom pyecharts.charts import Funnelfrom pyecharts.faker import Fakerc = (Funnel().add(series_name="",data_pair=[list(z) for z in zip(Faker.choose(), Faker.
·
一、通用的漏斗图
from pyecharts import options as opts
from pyecharts.charts import Funnel
from pyecharts.faker import Faker
c = (
Funnel()
.add(
series_name="",
data_pair=[list(z) for z in zip(Faker.choose(), Faker.values())],
# sort_="none", # 数据排序显示顺序
label_opts=opts.LabelOpts(is_show=True, position="outside"),
)
.set_global_opts(title_opts=opts.TitleOpts(title="标准漏斗图"))
# .render("标准漏斗图.html")
)
c.render_notebook()
二、AARRR模型主要应用于用户生命周期管理
三、从提升各个转化环节策略来看
四、AARRR模型各个环节关注指标
五、AARRR模型漏斗Python实现
from pyecharts import options as opts
from pyecharts.charts import Funnel
from pyecharts.globals import ThemeType
data = [60000, 10000, 5000, 1000, 600]
phase = ['新用户', '激活用户', '留存用户', '消费用户', '传播用户']
c = (
Funnel(init_opts=opts.InitOpts(width="900px", height="600px",theme = ThemeType.LIGHT))
.add(
series_name="",
data_pair=[list(z) for z in zip(phase,data)],
sort_="none", # 数据排序显示顺序
label_opts=opts.LabelOpts(is_show=True, position="inside"),
)
.set_global_opts(title_opts=opts.TitleOpts(title="AARRR漏斗图"))
)
c.render_notebook()
更多推荐
已为社区贡献6条内容
所有评论(0)