原文链接:https://blog.csdn.net/sinat_37422398/article/details/113085165

在这里插入图片描述

   \quad
  
 
</span><span class="katex-html"><span class="base"><span class="strut" style="height: 0em; vertical-align: 0em;"></span><span class="mspace" style="margin-right: 1em;"></span></span></span></span></span> 分层的思想在今年已经延伸到机器学习的各个领域中去,包括NLP 以及很多representataion learning。<br> <span class="katex--inline"><span class="katex"><span class="katex-mathml">

 
  
   
  
  
   \quad
  
 
</span><span class="katex-html"><span class="base"><span class="strut" style="height: 0em; vertical-align: 0em;"></span><span class="mspace" style="margin-right: 1em;"></span></span></span></span></span> 近些年,分层强化学习被看作更加复杂环境下的强化学习算法,其主要思想就是将一个大的问题进行分解,思路是依靠一个上层的policy去将整个任务进行分解,然后利用下层的policy去逐步执行。</p> 

Code: https://github.com/tensorflow/models/tree/master/research/efficient-hrl

相关资料:
总结性博文:
The Promise of Hierarchical Reinforcement Learning
中文版 强化学习遭遇瓶颈!分层RL将成为突破的希望

研究脉络:
2017年 ICML文章 提出封建网络FeUdal networks FeUdal networks for hierarchical reinforcement learning
2018年NIPS文章 HIRO Data-efficient hierarchical reinforcement learning
2018 AAAI 的文章 Learning Representations in Model-Free Hierarchical Reinforcement Learning

强化学习

HRL旨在通过分解学习的特定部分来减轻学习的复杂性。与分层强化学习的优势相比,强化学习的主要弱点可以被分解如下:

  • 样本效率:数据生成常常是瓶颈,当前的RL方法的数据效率较低。使用HRL,子任务和抽象动作可以用于同一域上的不同任务(迁移学习)。
  • 扩展:将传统的RL方法应用于具有大的动作或状态空间的问题是不可行的(维数灾难)。HRL的目标是将大问题分解成更小的问题(高效学习)。
  • 泛化:训练有素的代理可以解决复杂的任务,但是如果我们希望他们将经验迁移到新的(甚至相似的)环境中,即使最先进的RL算法也会失败(由于过度专业化而导致脆性)。
  • 抽象:状态和时间抽象可以简化问题,因为子任务可以通过RL方法(更好的知识表示)得到有效解决。

分层强化学习

强化学习问题存在严重的扩展问题。而分层强化学习(HRL)通过学习在不同程度的时间抽象上进行操作,可以解决这些问题。

为了真正理解学习算法中层次结构的必要性,并且在RL和HRL之间建立联系,我们需要记住我们要解决的问题:马尔科夫决策过程(MDP)。HRL方法学习的策略由多层组成,每层负责在不同程度的时间抽象中进行控制。事实上,HRL的关键创新是扩展可用动作集,使得代理现在不仅可以选择执行基本动作,而且还可以执行宏动作,即低级动作的序列。因此,随着时间的推移,我们必须考虑到决策时刻之间所花费的时间。幸运的是,MDP规划和学习算法可以很容易地扩展以适应HRL。

在这里插入图片描述
在这里插入图片描述
分层的优点

  • 时间上的抽象(Temporal abstraction) :可以考虑持续一段时间的策略
  • 迁移/重用性(Transfer/Reusability) :把大问题分解为小问题后,小问题学习到的解决方法可以迁移到别的问题之上
  • 有效性/有意义(powerful/meaningful)-状态上的抽象(state abstraction) :当前的状态中与所解决问题无关的状态不会被关注
    在这里插入图片描述

Option Framework

   \quad
  
 
</span><span class="katex-html"><span class="base"><span class="strut" style="height: 0em; vertical-align: 0em;"></span><span class="mspace" style="margin-right: 1em;"></span></span></span></span></span> HRL 中最著名的应该就是选项框架了。<br> <img src="https://img-blog.csdnimg.cn/20210125172914331.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3NpbmF0XzM3NDIyMzk4,size_16,color_FFFFFF,t_70" alt="在这里插入图片描述"><br> 选项是一个由三个元素构成的元组组 <span class="katex--inline"><span class="katex"><span class="katex-mathml">

 
  
   
    o
   
   
    =
   
   
    &lt;
   
   
    
     I
    
    
     o
    
   
   
    ,
   
   
    
     π
    
    
     o
    
   
   
    ,
   
   
    
     β
    
    
     o
    
   
   
    &gt;
   
  
  
   o=&lt;I_o,π_o,β_o&gt;
  
 
</span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.43056em; vertical-align: 0em;"></span><span class="mord mathdefault">o</span><span class="mspace" style="margin-right: 0.277778em;"></span><span class="mrel">=</span></span><span class="base"><span class="strut" style="height: 0.5782em; vertical-align: -0.0391em;"></span><span class="mrel">&lt;</span><span class="mspace" style="margin-right: 0.277778em;"></span></span><span class="base"><span class="strut" style="height: 0.88888em; vertical-align: -0.19444em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right: 0.07847em;">I</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.151392em;"><span class="" style="top: -2.55em; margin-left: -0.07847em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">o</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"><span class=""></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right: 0.166667em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right: 0.03588em;">π</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.151392em;"><span class="" style="top: -2.55em; margin-left: -0.03588em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">o</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"><span class=""></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right: 0.166667em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right: 0.05278em;">β</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.151392em;"><span class="" style="top: -2.55em; margin-left: -0.05278em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">o</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.277778em;"></span><span class="mrel">&gt;</span></span></span></span></span>:</p> 

  •       I
         
         
          o
         
        
       
       
        I_o
       
      
     </span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.83333em; vertical-align: -0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right: 0.07847em;">I</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.151392em;"><span class="" style="top: -2.55em; margin-left: -0.07847em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">o</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"><span class=""></span></span></span></span></span></span></span></span></span></span>:起始状态。I ⊆ S 表示option的初始状态</li><li><span class="katex--inline"><span class="katex"><span class="katex-mathml">
     
      
       
        
         
          π
         
         
          o
         
        
       
       
        π_o
       
      
     </span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.58056em; vertical-align: -0.15em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right: 0.03588em;">π</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.151392em;"><span class="" style="top: -2.55em; margin-left: -0.03588em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">o</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"><span class=""></span></span></span></span></span></span></span></span></span></span>:<span class="katex--inline"><span class="katex"><span class="katex-mathml">
     
      
       
        
         π
        
        
         :
        
        
         S
        
        
         ×
        
        
         A
        
        
         →
        
        
         [
        
        
         0
        
        
         ,
        
        
         1
        
        
         ]
        
       
       
        \pi:S × A → [0, 1]
       
      
     </span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.43056em; vertical-align: 0em;"></span><span class="mord mathdefault" style="margin-right: 0.03588em;">π</span><span class="mspace" style="margin-right: 0.277778em;"></span><span class="mrel">:</span><span class="mspace" style="margin-right: 0.277778em;"></span></span><span class="base"><span class="strut" style="height: 0.76666em; vertical-align: -0.08333em;"></span><span class="mord mathdefault" style="margin-right: 0.05764em;">S</span><span class="mspace" style="margin-right: 0.222222em;"></span><span class="mbin">×</span><span class="mspace" style="margin-right: 0.222222em;"></span></span><span class="base"><span class="strut" style="height: 0.68333em; vertical-align: 0em;"></span><span class="mord mathdefault">A</span><span class="mspace" style="margin-right: 0.277778em;"></span><span class="mrel">→</span><span class="mspace" style="margin-right: 0.277778em;"></span></span><span class="base"><span class="strut" style="height: 1em; vertical-align: -0.25em;"></span><span class="mopen">[</span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right: 0.166667em;"></span><span class="mord">1</span><span class="mclose">]</span></span></span></span></span> 代表策略, 是一个基于状态空间(State space)和动作空间(Action space)的概率分布函数</li><li><span class="katex--inline"><span class="katex"><span class="katex-mathml">
     
      
       
        
         
          β
         
         
          o
         
        
       
       
        β_o
       
      
     </span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.88888em; vertical-align: -0.19444em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right: 0.05278em;">β</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.151392em;"><span class="" style="top: -2.55em; margin-left: -0.05278em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">o</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"><span class=""></span></span></span></span></span></span></span></span></span></span>:终止条件。 β:S → [0, 1] 是终止条件,β(s)表示状态 s 有β(s)的概率终止并退出当前option。</li></ul> 
    

在这里插入图片描述
理解动作原语和选项之间的区别

   \quad
  
 
</span><span class="katex-html"><span class="base"><span class="strut" style="height: 0em; vertical-align: 0em;"></span><span class="mspace" style="margin-right: 1em;"></span></span></span></span></span> 一个人可以用上面的例子来理解这个框架的思想,其中选项可以概括为“去走廊”,动作(或原始选项)包括“向北、南、西或东”。选项可以被认为是在更高抽象程层次上的个体动作,因此可以抽象成技能。</p> 

底层是一个次级策略:

  • 进行环境观测
  • 输出动作
  • 运行到终止

顶层是用于选择option的高级策略(policy-over-option):

  • 进行环境观测
  • 输出子策略
  • 运行到终止

#################################################################

低层策略 生成的action 与环境直接交互,高层策略 在更长的时间步上进行学习。

分层强化学习也存在着3个重要的难点:

  • How should one train the lower-level policy to induce semantically distinct behavior? 怎么训练低层策略来感应语义存在不同的行为。
  • How should the high-level policy actions be defined?怎么定义高层策略的动作
  • How should the multiple policies be trained without incurring an inordinate amount of experience collection?怎么训练多个策略,在不过度收集数据的情况下。

本文 Contribution:
1)成功地将 off-policy 应用在 HRL 的 high-level policy 中。
2)提出了一种 off-policy correction 方法,用于解决 off-policy 在HRL中出现的不稳定问题。
3)由于 off-policy 的引入,提高了 HRL 的数据利用率。

框架

在这里插入图片描述
在这里插入图片描述

high-level action (or goal)
     g
    
    
     t
    
   
   
    ∈
   
   
    
     R
    
    
     
      d
     
     
      s
     
    
   
  
  
   g_t \in \mathbb{R}^{d_s}
  
 
</span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.73354em; vertical-align: -0.19444em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right: 0.03588em;">g</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.280556em;"><span class="" style="top: -2.55em; margin-left: -0.03588em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">t</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.277778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right: 0.277778em;"></span></span><span class="base"><span class="strut" style="height: 0.849108em; vertical-align: 0em;"></span><span class="mord"><span class="mord"><span class="mord mathbb">R</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.849108em;"><span class="" style="top: -3.063em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathdefault mtight">d</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.164543em;"><span class="" style="top: -2.357em; margin-left: 0em; margin-right: 0.0714286em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathdefault mtight">s</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.143em;"><span class=""></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></h4> 

   \quad
  
 
</span><span class="katex-html"><span class="base"><span class="strut" style="height: 0em; vertical-align: 0em;"></span><span class="mspace" style="margin-right: 1em;"></span></span></span></span></span> higher-level policy 观察状态,并且通过公它的 policy 重采样 生成一个high-level action (or goal) <span class="katex--inline"><span class="katex"><span class="katex-mathml">

 
  
   
    
     g
    
    
     t
    
   
   
    ∈
   
   
    
     R
    
    
     
      d
     
     
      s
     
    
   
  
  
   g_t \in \mathbb{R}^{d_s}
  
 
</span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.73354em; vertical-align: -0.19444em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right: 0.03588em;">g</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.280556em;"><span class="" style="top: -2.55em; margin-left: -0.03588em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">t</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.277778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right: 0.277778em;"></span></span><span class="base"><span class="strut" style="height: 0.849108em; vertical-align: 0em;"></span><span class="mord"><span class="mord"><span class="mord mathbb">R</span></span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.849108em;"><span class="" style="top: -3.063em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mord mathdefault mtight">d</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.164543em;"><span class="" style="top: -2.357em; margin-left: 0em; margin-right: 0.0714286em;"><span class="pstrut" style="height: 2.5em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mathdefault mtight">s</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.143em;"><span class=""></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span></span>,<span class="katex--inline"><span class="katex"><span class="katex-mathml">

 
  
   
    
     g
    
    
     t
    
   
   
    ∽
   
   
    
     μ
    
    
     
      h
     
     
      i
     
    
   
  
  
   g_t \backsim \mu^{hi}
  
 
</span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.625em; vertical-align: -0.19444em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right: 0.03588em;">g</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.280556em;"><span class="" style="top: -2.55em; margin-left: -0.03588em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">t</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.277778em;"></span><span class="mrel amsrm">∽</span><span class="mspace" style="margin-right: 0.277778em;"></span></span><span class="base"><span class="strut" style="height: 1.04355em; vertical-align: -0.19444em;"></span><span class="mord"><span class="mord mathdefault">μ</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.849108em;"><span class="" style="top: -3.063em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">h</span><span class="mord mathdefault mtight">i</span></span></span></span></span></span></span></span></span></span></span></span></span> (注意,这里说明子目标不是手工设置的,而是高层policy生成的抽象目标),其中 <span class="katex--inline"><span class="katex"><span class="katex-mathml">

 
  
   
    t
   
   
    ≡
   
   
    0
   
   
    (
   
   
    m
   
   
    o
   
   
    d
   
   
    &nbsp;
   
   
    c
   
   
    )
   
  
  
   t \equiv 0(mod \ c)
  
 
</span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.61508em; vertical-align: 0em;"></span><span class="mord mathdefault">t</span><span class="mspace" style="margin-right: 0.277778em;"></span><span class="mrel">≡</span><span class="mspace" style="margin-right: 0.277778em;"></span></span><span class="base"><span class="strut" style="height: 1em; vertical-align: -0.25em;"></span><span class="mord">0</span><span class="mopen">(</span><span class="mord mathdefault">m</span><span class="mord mathdefault">o</span><span class="mord mathdefault">d</span><span class="mspace">&nbsp;</span><span class="mord mathdefault">c</span><span class="mclose">)</span></span></span></span></span>,或者使用一个固定的目标转移函数 <span class="katex--inline"><span class="katex"><span class="katex-mathml">

 
  
   
    
     g
    
    
     t
    
   
   
    =
   
   
    h
   
   
    (
   
   
    
     s
    
    
     
      t
     
     
      −
     
     
      1
     
    
   
   
    ,
   
   
    
     g
    
    
     
      t
     
     
      −
     
     
      1
     
    
   
   
    ,
   
   
    
     s
    
    
     t
    
   
   
    )
   
  
  
   g_t = h(s_{t-1},g_{t-1},s_t)
  
 
</span><span class="katex-html"><span class="base"><span class="strut" style="height: 0.625em; vertical-align: -0.19444em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right: 0.03588em;">g</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.280556em;"><span class="" style="top: -2.55em; margin-left: -0.03588em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">t</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"><span class=""></span></span></span></span></span></span><span class="mspace" style="margin-right: 0.277778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right: 0.277778em;"></span></span><span class="base"><span class="strut" style="height: 1em; vertical-align: -0.25em;"></span><span class="mord mathdefault">h</span><span class="mopen">(</span><span class="mord"><span class="mord mathdefault">s</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.301108em;"><span class="" style="top: -2.55em; margin-left: 0em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">t</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.208331em;"><span class=""></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right: 0.166667em;"></span><span class="mord"><span class="mord mathdefault" style="margin-right: 0.03588em;">g</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.301108em;"><span class="" style="top: -2.55em; margin-left: -0.03588em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">t</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.208331em;"><span class=""></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right: 0.166667em;"></span><span class="mord"><span class="mord mathdefault">s</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height: 0.280556em;"><span class="" style="top: -2.55em; margin-left: 0em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathdefault mtight">t</span></span></span></span><span class="vlist-s">​</span></span><span class="vlist-r"><span class="vlist" style="height: 0.15em;"><span class=""></span></span></span></span></span></span><span class="mclose">)</span></span></span></span></span> 生成(最简单的情况下可以是 a pass-through function )。<br> <span class="katex--inline"><span class="katex"><span class="katex-mathml">

 
  
   
  
  
   \quad
  
 
</span><span class="katex-html"><span class="base"><span class="strut" style="height: 0em; vertical-align: 0em;"></span><span class="mspace" style="margin-right: 1em;"></span></span></span></span></span> temporal abstraction:higher-level policy <span class="katex--inline"><span class="katex"><span class="katex-mathml">

 
  
   
    
     μ
    
    
     
      h
     
     
      i
     
    
   
  
  
   \mu^{hi}
  
 
</span><span class="katex-html"><span class="base"><span class="strut" style="height: 1.04355em; vertical-align: -0.19444em;"></span><span class="mord"><span class="mord mathdefault">μ</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height: 0.849108em;"><span class="" style="top: -3.063em; margin-right: 0.05em;"><span class="pstrut" style="height: 2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathdefault mtight">h</span><span class="mord mathdefault mtight">i</span></span></span></span></span></span></span></span></span></span></span></span></span> 每 c 步更新一次,从而 provides temporal abstraction。<br> <img src="https://img-blog.csdnimg.cn/20210124204810780.jpg?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3NpbmF0XzM3NDIyMzk4,size_16,color_FFFFFF,t_70" alt="在这里插入图片描述"><br> <img src="https://img-blog.csdnimg.cn/20210124204810907.jpg?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3NpbmF0XzM3NDIyMzk4,size_16,color_FFFFFF,t_70" alt="在这里插入图片描述"><br> <img src="https://img-blog.csdnimg.cn/20210124204810987.jpg?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3NpbmF0XzM3NDIyMzk4,size_16,color_FFFFFF,t_70" alt="在这里插入图片描述"></p> 

以下摘自:
强化学习 最前沿之Hierarchical reinforcement learning(一)_Dr.Zee的博客-CSDN博客
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

Logo

腾讯云面向开发者汇聚海量精品云计算使用和开发经验,营造开放的云计算技术生态圈。

更多推荐