hadoop之mr案例
hadoop之mr案例
·
mr案例
(1)创建maven项目
(2)在po,.xml添加下面代码
<dependencies>
<dependency>
<groupId>junit</groupId>
<artifactId>junit</artifactId>
<version>4.12</version>
</dependency>
<dependency>
<groupId>org.slf4j</groupId>
<artifactId>slf4j-log4j12</artifactId>
<version>1.7.30</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version>3.1.3</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>3.1.3</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-hdfs</artifactId>
<version>3.1.3</version>
<scope>test</scope>
</dependency>
</dependencies>
(3)在项目的src/main/resources目录下,新建一个文 件,命名为“log4j.properties”,在文件中填入。
log4j.rootLogger=INFO, stdout
log4j.appender.stdout=org.apache.log4j.ConsoleAppender
log4j.appender.stdout.layout=org.apache.log4j.PatternLayout
log4j.appender.stdout.layout.ConversionPattern=%d %p [%c] - %m%n
log4j.appender.logfile=org.apache.log4j.FileAppender
log4j.appender.logfile.File=target/spring.log
log4j.appender.logfile.layout=org.apache.log4j.PatternLayout
log4j.appender.logfile.layout.ConversionPattern=%d %p [%c] - %m%n
编写程序
(1)编写Mapper类
package com.scy;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
public class WordCountMapper extends Mapper<LongWritable,Text,Text,IntWritable> {
//实例化数据类型对象
Text k = new Text();
IntWritable v = new IntWritable(1);
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
//1.获取一行数据
String line = value.toString();
//2.切割字符串
String[] words = line.split(" ");
//3.输出
for(String word : words){
k.set(word);
context.write(k,v);
}
}
}
(2)编写Reducer类
package com.scy;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
public class WordCountReducer extends Reducer<Text, IntWritable,Text,IntWritable> {
int sum;
IntWritable v = new IntWritable();
@Override
protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
//1.累加求和
sum = 0;
for(IntWritable count: values){
sum += count.get();
}
//2.输出
v.set(sum);
context.write(key,v);
}
}
(3)编写Driver驱动类
package com.scy;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
public class WordCountDriver {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
// 1 获取配置信息以及封装任务
Configuration configuration = new Configuration();
Job job = Job.getInstance();
// 2 设置jar加载路径
job.setJarByClass(WordCountDriver.class);
// 3 设置map和reduce类
job.setMapperClass(WordCountMapper.class);
job.setReducerClass(WordCountReducer.class);
// 4 设置map输出
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
// 5 设置最终输出kv类型
job.setOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
// 6 设置输入和输出路径
FileInputFormat.setInputPaths(job,new Path("D:\\input\\hello.txt"));
FileOutputFormat.setOutputPath(job,new Path("D:\\output"));
// 7 提交
boolean result = job.waitForCompletion(true);
System.out.println(result?0:1);
}
}
(5)本地测试
(1)如果电脑系统是win7的就将win7的hadoop jar包
解压到非中文路径,并在Windows环境上配置
HADOOP_HOME环境变量。如果是电脑win10操作系
统,就解压win10的hadoop jar包,并配置
HADOOP_HOME环境变量。
注意:win8电脑和win10家庭版操作系统可能有问题,
需要重新编译源码或者更改操作系统。
(2)在Eclipse/Idea上运行程序
(6)集群上测试
将路径改成下方代码的路径
// 6 设置输入和输出路径
FileInputFormat.setInputPaths(job,new Path(args[0]));
FileOutputFormat.setOutputPath(job,new Path(args[1]));
(0)用maven打jar包,需要添加的打包插件依赖
注意:标记红颜色的部分需要替换为自己工程主类
<build>
<plugins>
<plugin>
<artifactId>maven-compilerplugin</artifactId>
<version>2.3.2</version>
<configuration>
<source>1.8</source>
<target>1.8</target>
</configuration>
</plugin>
<plugin>
<artifactId>maven-assemblyplugin </artifactId>
<configuration>
<descriptorRefs>
<descriptorRef>jarwith-dependencies</descriptorRef>
</descriptorRefs>
<archive>
<manifest>
<mainClass>com.xyd.WordcountDriver</mainCla
ss>
</manifest>
</archive>
</configuration>
<executions>
<execution>
<id>makeassembly</id>
<phase>package</phase>
<goals>
<goal>single</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
注意:如果工程上显示红叉。在项目上右键->maven->update project即可。
(1)将程序打成jar包,然后拷贝到Hadoop集群中
(/opt/modle/hadoop-3.1.3)
步骤详情:右键->Run as->maven install。等待编译完
成就会在项目的target文件夹中生成jar包。如果看不
到。在项目上右键-》Refresh,即可看到。修改不带依
赖的jar包名称为mr.jar,并拷贝该jar包到Hadoop集
群。
(2)启动Hadoop集群(linux)
(3)执行WordCount程序 (linux)
[admin@hadoop1002 hadoop-3.1.3]$ hadoop jar
mr.jar com.xyd.WordCountDriver /input
/output
以上就是mr案例的所有的本地测试和集群测试,请大家参考。
更多推荐
所有评论(0)