一文彻底搞懂深度学习 - 多头注意力(Multi-Head Attention)
(或称为“头”)进行处理。****
**********在深度学习中,**多头注意力(Multi-Head Attention)是一种注意力机制。它是对传统注意力机制的一种改进,旨在通过分割输入特征为多个“头部”(head)并独立处理每个头部来提高模型的表达能力和学习能力。
多头注意力机制已被广泛应用于各种深度学习任务中,包括但不限于机器翻译、文本摘要、语音识别、图像描述生成等。它在Transformer架构中扮演着至关重要的角色,而Transformer架构也已成为许多自然语言处理(NLP)任务的首选模型。
Multi-Head Attention
一、多头注意力机制
多头注意力机制(Multi-Head Attention)是什么?多头注意力机制将输入的特征(通常是查询、键和值)通过多个独立的、并行运行的注意力模块(或称为“头”)进行处理。****
每个头都会独立地计算注意力得分,并生成一个注意力加权后的输出。这些输出随后被合并(通常是通过拼接或平均)以形成一个最终的、更复杂的表示。
多头注意力计算过程是什么?********多头注意力将输入序列通过线性变换得到查询、键和值矩阵,然后分头进行缩放点积注意力运算,最后将所有头的输出拼接并经过线性变换得到最终输出。
-
输入变换:输入序列首先通过三个不同的线性变换层,分别得到查询(Query)、键(Key)和值(Value)矩阵。这些变换通常是通过全连接层实现的。
-
分头:将查询、键和值矩阵分成多个头(即多个子空间),每个头具有不同的线性变换参数。
-
注意力计算:对于每个头,都执行一次缩放点积注意力(Scaled Dot-Product Attention)运算。具体来说,计算查询和键的点积,经过缩放、加上偏置后,使用softmax函数得到注意力权重。这些权重用于加权值矩阵,生成加权和作为每个头的输出。
-
拼接与融合:将所有头的输出拼接在一起,形成一个长向量。然后,对拼接后的向量进行一个最终的线性变换,以整合来自不同头的信息,得到最终的多头注意力输出。
******多头注意力机制和注意力机制区别是什么?多头注意力机制通过引入多个并行的注意力头,提高了模型对输入数据的全面捕捉和处理能力,使其在处理大规模数据和复杂任务时**更具优势。
-
注意力机制:通过聚焦于关键信息,提高了模型对输入数据的理解和处理能力。
-
多头注意力机制:通过并行处理和集成多个注意力头的结果,从不同角度捕捉数据的多样性,进一步增强了模型的学习能力和表达力。
二、Transformer & GPT
****Transformer多头注意力有多少个Head?****Transformer多头注意力中的“头”(Head)的数量是一个超参数,这意味着它可以根据具体任务和数据集的需求进行调整。在Transformer模型中,并没有固定数量的注意力头,而是可以根据实际情况进行配置。
****GPT多头注意力有多少个Head?****GPT模型中的多头注意力机制的头数量同样是一个超参数,它根据GPT版本和模型配置的不同而有所变化。
-
GPT-1:GPT-1模型使用了12层的Transformer解码器结构,每层解码器中包含了多头自注意力机制。根据常见的配置,它可能采用了与Transformer模型相似的头数量设置,如8个、16个等。
-
GPT-2:GPT-2模型在结构上进行了扩展,例如GPT-2 Medium版本使用了24层的Transformer解码器,并且每层中的隐藏层维度为1024。在这个配置下,GPT-2 Medium有16个注意力头。
-
GPT-3:GPT-3模型在规模和复杂度上进一步增加,使用了更多的层和更大的隐藏层维度。然而,关于GPT-3具体使用了多少个注意力头的详细信息,并没有在公开文档中明确提及。与GPT-1和GPT-2类似,GPT-3的多头注意力头数量也是一个可以根据模型配置进行调整的超参数。
如何学习AI大模型 ?
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
👉1.大模型入门学习思维导图👈
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
👉2.AGI大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
👉3.大模型实际应用报告合集👈
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)
👉4.大模型落地应用案例PPT👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)
👉5.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
👉6.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈
更多推荐
所有评论(0)