在Markdown中用LaTeX输入公式-csdn

Markdown语法简洁,LaTeX版面优美,相互配合,可以使用Markdown处理大多数的公式输入。
LaTeX的教程中,刘海洋的《LaTeX入门》全面专业,其中第1章第2节的示例《杂谈勾股定理》写得简洁优美,用不到100行的代码,把LaTeX使用过程中的各个环节都做了一个简洁的展示,是LaTeX入门的捷径。
另外,《一份(不太)简短的 LATEX 2ε 介绍》(-或 111 分钟了解 LATEX 2ε)正文大约111页,篇幅相对比较短,作为参考也非常棒。
本文就是把这个文档的第四章的数学公式部分的命令,在Markdown中测试了一遍。除了“定理”部分的语法,因为用到特定的宏命令包无法使用外,大部分命令在Markdown中均能正常使用。
《一份(不太)简短的 LATEX 2ε 介绍》的第4.9节有完整的公式符号对应LaTeX命令的表,查起来也非常方便。

参考资料:

  • 刘海洋的《LaTeX入门》
  • 《一份(不太)简短的 LATEX 2ε 介绍-或 111 分钟了解 LATEX 2ε》 https://ctan.math.utah.edu/ctan/tex-archive/info/lshort/chinese/lshort-zh-cn.pdf
  • Markdown官方教程 https://markdown.com.cn/basic-syntax/

注意,各个网站的markdown语法都有自己的特色,有些命令在jupyter-lab中可以使用,但是未必与其他网站兼容
因此,具体能否有效,还是要到具体网址进行测试。
从测试情况来看,csdn网站用的是KaTex,与LaTeX命令稍有不同,部分命令要进行替换。
KaTeX命令参考:https://katex.org/docs/supported.html


公式排版基础

行内和行间公式

行内公式由一对 $ 符号包裹,例如:

勾股定理: $a^2 + b^2 = c^2$.

勾股定理: a 2 + b 2 = c 2 a^2 + b^2 = c^2 a2+b2=c2.

行间公式单独成行,使用$$包裹。
如果公式需要编号,可以使用tag命令。

毕达哥拉斯定理:
$$
a^2 + b^2 = c^2 \tag{1.1}
$$
公式 (1.1) 在中国被称为勾股定理.

毕达哥拉斯定理:
a 2 + b 2 = c 2 (1.1) a^2 + b^2 = c^2 \tag{1.1} a2+b2=c2(1.1)
公式 (1.1) 在中国被称为勾股定理.

行内公式采用不同的排列和字号以适应行高:
行内公式: $\lim_{n \to \infty}
\sum_{k=1}^n \frac{1}{k^2}
= \frac{\pi^2}{6}$.

行内公式: lim ⁡ n → ∞ ∑ k = 1 n 1 k 2 = π 2 6 \lim_{n \to \infty} \sum_{k=1}^n \frac{1}{k^2} = \frac{\pi^2}{6} limnk=1nk21=6π2.

行间公式:
$$
\lim_{n \to \infty}
\sum_{k=1}^n \frac{1}{k^2}
= \frac{\pi^2}{6}
$$

行间公式:
lim ⁡ n → ∞ ∑ k = 1 n 1 k 2 = π 2 6 \lim_{n \to \infty} \sum_{k=1}^n \frac{1}{k^2} = \frac{\pi^2}{6} nlimk=1nk21=6π2


数学模式

需要人为引入间距时,使用quad 和qquad 及\:等间距命令

$x^{2} \geq 0 \qquad \text{for all} \: x\in\mathbb{R}$

x 2 ≥ 0 for all   x ∈ R x^{2} \geq 0 \qquad \text{for all} \: x\in\mathbb{R} x20for allxR


数学符号

一般符号

$a_1, a_2, \dots, a_n$

a 1 , a 2 , … , a n a_1, a_2, \dots, a_n a1,a2,,an

$a_1 + a_2 + \cdots + a_n$

a 1 + a 2 + ⋯ + a n a_1 + a_2 + \cdots + a_n a1+a2++an

指数、上下标和导数

$$p^3_{ij} \qquad m_\mathrm{Knuth}\qquad \sum_{k=1}^3 k $$  

p i j 3 m K n u t h ∑ k = 1 3 k p^3_{ij} \qquad m_\mathrm{Knuth}\qquad \sum_{k=1}^3 k pij3mKnuthk=13k

$a^x+y \neq a^{x+y}\qquad e^{x^2} \neq {e^x}^2$

a x + y ≠ a x + y e x 2 ≠ e x 2 a^x+y \neq a^{x+y}\qquad e^{x^2} \neq {e^x}^2 ax+y=ax+yex2=ex2

$f(x) = x^2 \quad f'(x) = 2x \quad f''^{2}(x) = 4$

f ( x ) = x 2 f ′ ( x ) = 2 x f ′ ′ 2 ( x ) = 4 f(x) = x^2 \quad f'(x) = 2x \quad f''^{2}(x) = 4 f(x)=x2f(x)=2xf2(x)=4

分式和根式

注意行间公式中dfrac的作用和行内公式中dfrac的作用
行间公式:

$$
3/8 \qquad \frac{3}{8} \qquad \tfrac{3}{8}
$$

3 / 8 3 8 3 8 3/8 \qquad \frac{3}{8} \qquad \tfrac{3}{8} 3/88383

行内公式:

$1\frac{1}{2}$ hours $\qquad 1\dfrac{1}{2}$hours

1 1 2 1\frac{1}{2} 121 hours 1 1 2 \qquad 1\dfrac{1}{2} 121hours

$\sqrt{x} \Leftrightarrow x^{1/2} \quad \sqrt[3]{2} \quad \sqrt{x^{2} + \sqrt{y}}$

x ⇔ x 1 / 2 2 3 x 2 + y \sqrt{x} \Leftrightarrow x^{1/2} \quad \sqrt[3]{2} \quad \sqrt{x^{2} + \sqrt{y}} x x1/232 x2+y

二项式:

$$
\binom{n}{k} =\binom{n-1}{k} + \binom{n-1}{k-1}
$$

( n k ) = ( n − 1 k ) + ( n − 1 k − 1 ) \binom{n}{k} =\binom{n-1}{k} + \binom{n-1}{k-1} (kn)=(kn1)+(k1n1)

关系符

$$f_n(x) \stackrel{*}{\approx} 1$$

f n ( x ) ≈ ∗ 1 f_n(x) \stackrel{*}{\approx} 1 fn(x)1

算符

$$ \lim_{x \rightarrow 0} \frac{\sin x}{x}=1 $$

lim ⁡ x → 0 sin ⁡ x x = 1 \lim_{x \rightarrow 0} \frac{\sin x}{x}=1 x0limxsinx=1

$$ a \bmod b \\
 x \equiv a \pmod{b} $$

a   m o d   b x ≡ a ( m o d b ) a \bmod b \\ x \equiv a \pmod{b} amodbxa(modb)

巨算符

$$\sum_{i=1}^n \quad \int_0^{\frac{\pi}{2}} \quad \oint_0^{\pi / 2 } \quad \prod_\epsilon $$

∑ i = 1 n ∫ 0 π 2 ∮ 0 π / 2 ∏ ϵ \sum_{i=1}^n \quad \int_0^{\frac{\pi}{2}} \quad \oint_0^{\pi / 2 } \quad \prod_\epsilon i=1n02π0π/2ϵ

$$\sum_{i=1}^n \quad \int_0^{\frac{\pi}{2}} \quad \oint_0^{\pi / 2 } \quad \prod_\epsilon $$

∑ i = 1 n ∫ 0 π 2 ∮ 0 π / 2 ∏ ϵ \sum_{i=1}^n \quad \int_0^{\frac{\pi}{2}} \quad \oint_0^{\pi / 2 } \quad \prod_\epsilon i=1n02π0π/2ϵ

$$\sum\limits_{i=1}^n \quad \int\limits_0^{\frac{\pi}{2}} \quad \prod\limits_\epsilon $$

∑ i = 1 n ∫ 0 π 2 ∏ ϵ \sum\limits_{i=1}^n \quad \int\limits_0^{\frac{\pi}{2}} \quad \prod\limits_\epsilon i=1n02πϵ

$$\sum\nolimits_{i=1}^n \quad \int\limits_0^{\frac{\pi}{2}} \quad \prod\nolimits_\epsilon$$

∑ i = 1 n ∫ 0 π 2 ∏ ϵ \sum\nolimits_{i=1}^n \quad \int\limits_0^{\frac{\pi}{2}} \quad \prod\nolimits_\epsilon i=1n02πϵ

$$\sum_{\begin{aligned} 0\le &i\le n \\
j&\in \mathbb{R}  \end{aligned}} P(i,j) = Q(n)$$

∑ 0 ≤ i ≤ n j ∈ R P ( i , j ) = Q ( n ) \sum_{\begin{aligned} 0\le &i\le n \\ j&\in \mathbb{R} \end{aligned}} P(i,j) = Q(n) 0jinRP(i,j)=Q(n)

$$\sum_{\begin{aligned} &0\le i\le n \\
&j\in \mathbb{R} \end{aligned}} P(i,j) = Q(n)$$

∑ 0 ≤ i ≤ n j ∈ R P ( i , j ) = Q ( n ) \sum_{\begin{aligned} &0\le i\le n \\ &j\in \mathbb{R} \end{aligned}} P(i,j) = Q(n) 0injRP(i,j)=Q(n)

数学重音和上下括号

$\bar{x_0} \quad \bar{x}_0$

x 0 ˉ x ˉ 0 \bar{x_0} \quad \bar{x}_0 x0ˉxˉ0

$\vec{x_0} \quad \vec{x}_0$

x 0 ⃗ x ⃗ 0 \vec{x_0} \quad \vec{x}_0 x0 x 0

$\hat{\mathbf{e}_x} \quad \hat{\mathbf{e}}_x$

e x ^ e ^ x \hat{\mathbf{e}_x} \quad \hat{\mathbf{e}}_x ex^e^x

$0.\overline{3} = \underline{\underline{1/3}}$

0. 3 ‾ = 1 / 3 ‾ ‾ 0.\overline{3} = \underline{\underline{1/3}} 0.3=1/3

$\hat{XY} \qquad \widehat{XY}$

X Y ^ X Y ^ \hat{XY} \qquad \widehat{XY} XY^XY

$\vec{AB} \qquad \overrightarrow{AB}$

A B ⃗ A B → \vec{AB} \qquad \overrightarrow{AB} AB AB

$\underbrace{\overbrace{(a+b+c)}^6 \cdot \overbrace{(d+e+f)}^7} _\text{meaning of life} = 42$

( a + b + c ) ⏞ 6 ⋅ ( d + e + f ) ⏞ 7 ⏟ meaning of life = 42 \underbrace{\overbrace{(a+b+c)}^6 \cdot \overbrace{(d+e+f)}^7} _\text{meaning of life} = 42 meaning of life (a+b+c) 6(d+e+f) 7=42

箭头

$$  a\xleftarrow{x+y+z} b $$

a ← x + y + z b a\xleftarrow{x+y+z} b ax+y+z b

$$ c\xrightarrow[x<y]{a*b*c}d $$

c → x < y a ∗ b ∗ c d c\xrightarrow[x<y]{a*b*c}d cabc x<yd

括号和定界符

${a,b,c} \neq \{a,b,c\}$

a , b , c ≠ { a , b , c } {a,b,c} \neq \{a,b,c\} a,b,c={a,b,c}

$$1 + \left(\frac{1}{1-x^{2}} \right)^3 \qquad \left.\frac{\partial f}{\partial t} \right|_{t=0}$$

1 + ( 1 1 − x 2 ) 3 ∂ f ∂ t ∣ t = 0 1 + \left(\frac{1}{1-x^{2}} \right)^3 \qquad \left.\frac{\partial f}{\partial t} \right|_{t=0} 1+(1x21)3tft=0

$\Bigl((x+1)(x-1)\Bigr)^{2}$  

( ( x + 1 ) ( x − 1 ) ) 2 \Bigl((x+1)(x-1)\Bigr)^{2} ((x+1)(x1))2

$\bigl( \Bigl( \biggl( \Biggl( \quad
\bigr\} \Bigr\} \biggr\} \Biggr\} \quad
\big\| \Big\| \bigg\| \Bigg\| \quad
\big\Downarrow \Big\Downarrow
\bigg\Downarrow \Bigg\Downarrow$

( ( ( ( } } } } ∥ ∥ ∥ ∥ ⇓ ⇓ ⇓ ⇓ \bigl( \Bigl( \biggl( \Biggl( \quad \bigr\} \Bigr\} \biggr\} \Biggr\} \quad \big\| \Big\| \bigg\| \Bigg\| \quad \big\Downarrow \Big\Downarrow \bigg\Downarrow \Bigg\Downarrow ((((}}}}

多行公式

长公式折行

$$\begin{aligned}
a + b + c + d + e + f + g + h + i \\
= j + k + l + m + n\\
= o + p + q + r + s\\
= t + u + v + x + z
\end{aligned}$$

a + b + c + d + e + f + g + h + i = j + k + l + m + n = o + p + q + r + s = t + u + v + x + z \begin{aligned} a + b + c + d + e + f + g + h + i \\ = j + k + l + m + n\\ = o + p + q + r + s\\ = t + u + v + x + z \end{aligned} a+b+c+d+e+f+g+h+i=j+k+l+m+n=o+p+q+r+s=t+u+v+x+z

多行公式

$$\begin{aligned}
a & = b + c \\
& = d + e
\end{aligned}$$

a = b + c = d + e \begin{aligned} a & = b + c \\ & = d + e \end{aligned} a=b+c=d+e

在以下的例子,为了对齐等号,我们将分隔符放在右侧,并且此时需要在等号后添加一对括号 {} 以产生正常的间距:

$$\begin{aligned}
a ={} & b + c \\
={} & d + e + f + g + h + i + j + k + l  \\
& + m + n + o \\
={} & p + q + r + s
\end{aligned}$$

a = b + c = d + e + f + g + h + i + j + k + l + m + n + o = p + q + r + s \begin{aligned} a = & b + c \\ = & d + e + f + g + h + i + j + k + l \\ & + m + n + o \\ = & p + q + r + s \end{aligned} a===b+cd+e+f+g+h+i+j+k+l+m+n+op+q+r+s

aligned 还能够对齐多组公式,除等号前的 & 之外,公式之间也用 & 分隔:
参考:https://blog.csdn.net/COCO56/article/details/98477502

$$\begin{aligned}
a &=1 & b &=2 & c &=3 \\
d &=-1 & e &=-2 & f &=-5
\end{aligned}$$

a = 1 b = 2 c = 3 d = − 1 e = − 2 f = − 5 \begin{aligned} a &=1 & b &=2 & c &=3 \\ d &=-1 & e &=-2 & f &=-5 \end{aligned} ad=1=1be=2=2cf=3=5

默认右对齐?

$$\begin{aligned}
a = b + c \\
d = e + f + g \\
h + i = j + k  \\
l + m = n
\end{aligned}$$

a = b + c d = e + f + g h + i = j + k l + m = n \begin{aligned} a = b + c \\ d = e + f + g \\ h + i = j + k \\ l + m = n \end{aligned} a=b+cd=e+f+gh+i=j+kl+m=n

左对齐:

$$\begin{aligned}
&a = b + c \\
&d = e + f + g \\
&h + i = j + k  \\
&l + m = n
\end{aligned}$$

a = b + c d = e + f + g h + i = j + k l + m = n \begin{aligned} &a = b + c \\ &d = e + f + g \\ &h + i = j + k \\ &l + m = n \end{aligned} a=b+cd=e+f+gh+i=j+kl+m=n

公用编号的多行公式

公式环境用等号对齐:

$$
\begin{aligned}
a &= b + c \\
d &= e + f + g \\
h + i &= j + k \\
l + m &= n
\end{aligned} \tag{1.3}
$$

a = b + c d = e + f + g h + i = j + k l + m = n (1.3) \begin{aligned} a &= b + c \\ d &= e + f + g \\ h + i &= j + k \\ l + m &= n \end{aligned} \tag{1.3} adh+il+m=b+c=e+f+g=j+k=n(1.3)

数组和矩阵

$$
 \mathbf{X} = \left(
\begin{array}{cccc}
x_{11} & x_{12} & \ldots & x_{1n}\\
x_{21} & x_{22} & \ldots & x_{2n}\\
\vdots & \vdots & \ddots & \vdots\\
x_{n1} & x_{n2} & \ldots & x_{nn}\\
\end{array} \right)
$$

X = ( x 11 x 12 … x 1 n x 21 x 22 … x 2 n ⋮ ⋮ ⋱ ⋮ x n 1 x n 2 … x n n ) \mathbf{X} = \left( \begin{array}{cccc} x_{11} & x_{12} & \ldots & x_{1n}\\ x_{21} & x_{22} & \ldots & x_{2n}\\ \vdots & \vdots & \ddots & \vdots\\ x_{n1} & x_{n2} & \ldots & x_{nn}\\ \end{array} \right) X=x11x21xn1x12x22xn2x1nx2nxnn

$$
 |x| = \left\{
\begin{array}{rl}
-x & \text{if } x < 0,\\
0 & \text{if } x = 0,\\
x & \text{if } x > 0.
\end{array} \right. 
$$

∣ x ∣ = { − x if  x < 0 , 0 if  x = 0 , x if  x > 0. |x| = \left\{ \begin{array}{rl} -x & \text{if } x < 0,\\ 0 & \text{if } x = 0,\\ x & \text{if } x > 0. \end{array} \right. x=x0xif x<0,if x=0,if x>0.

$$
|x| = \begin{cases}
-x & \text{if } x < 0,\\
0 & \text{if } x = 0,\\
x & \text{if } x > 0.
\end{cases}
$$

∣ x ∣ = { − x if  x < 0 , 0 if  x = 0 , x if  x > 0. |x| = \begin{cases} -x & \text{if } x < 0,\\ 0 & \text{if } x = 0,\\ x & \text{if } x > 0. \end{cases} x=x0xif x<0,if x=0,if x>0.

$$\begin{matrix} 1 & 2 \\
3 & 4 \end{matrix}$$

1 2 3 4 \begin{matrix} 1 & 2 \\ 3 & 4 \end{matrix} 1324

$$\begin{pmatrix} 1 & 2 \\
3 & 4 \end{pmatrix}$$ 

( 1 2 3 4 ) \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} (1324)

$$\begin{vmatrix} 1 & 2 \\
3 & 4 \end{vmatrix}$$

∣ 1 2 3 4 ∣ \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} 1324

$$\begin{Vmatrix} 1 & 2 \\
3 & 4 \end{Vmatrix}$$ 

∥ 1 2 3 4 ∥ \begin{Vmatrix} 1 & 2 \\ 3 & 4 \end{Vmatrix} 1324

$$\begin{bmatrix}
x_{11} & x_{12} & \ldots & x_{1n}\\
x_{21} & x_{22} & \ldots & x_{2n}\\
\vdots & \vdots & \ddots & \vdots\\
x_{n1} & x_{n2} & \ldots & x_{nn}\\
\end{bmatrix}$$

[ x 11 x 12 … x 1 n x 21 x 22 … x 2 n ⋮ ⋮ ⋱ ⋮ x n 1 x n 2 … x n n ] \begin{bmatrix} x_{11} & x_{12} & \ldots & x_{1n}\\ x_{21} & x_{22} & \ldots & x_{2n}\\ \vdots & \vdots & \ddots & \vdots\\ x_{n1} & x_{n2} & \ldots & x_{nn}\\ \end{bmatrix} x11x21xn1x12x22xn2x1nx2nxnn

$$
\mathbf{H}=
\begin{bmatrix}
\dfrac{\partial^2 f}{\partial x^2} &
\dfrac{\partial^2 f}
{\partial x \partial y} \\[8pt]
\dfrac{\partial^2 f}
{\partial x \partial y} &
\dfrac{\partial^2 f}{\partial y^2}
\end{bmatrix}
$$

H = [ ∂ 2 f ∂ x 2 ∂ 2 f ∂ x ∂ y ∂ 2 f ∂ x ∂ y ∂ 2 f ∂ y 2 ] \mathbf{H}= \begin{bmatrix} \dfrac{\partial^2 f}{\partial x^2} & \dfrac{\partial^2 f} {\partial x \partial y} \\[8pt] \dfrac{\partial^2 f} {\partial x \partial y} & \dfrac{\partial^2 f}{\partial y^2} \end{bmatrix} H=x22fxy2fxy2fy22f

$$
\mathbf{H}=
\begin{bmatrix}
\dfrac{\partial^2 f}{\partial x^2} &
\dfrac{\partial^2 f}
{\partial x \partial y} \\[8pt]
\dfrac{\partial^2 f}
{\partial x \partial y} &
\dfrac{\partial^2 f}{\partial y^2}
\end{bmatrix}
$$

H = [ ∂ 2 f ∂ x 2 ∂ 2 f ∂ x ∂ y ∂ 2 f ∂ x ∂ y ∂ 2 f ∂ y 2 ] \mathbf{H}= \begin{bmatrix} \dfrac{\partial^2 f}{\partial x^2} & \dfrac{\partial^2 f} {\partial x \partial y} \\[8pt] \dfrac{\partial^2 f} {\partial x \partial y} & \dfrac{\partial^2 f}{\partial y^2} \end{bmatrix} H=x22fxy2fxy2fy22f

公式中的间距

一个常见的用途是修正积分的被积函数 f(x) 和微元 dx 之间的距离。注意微元里的 d 用的
是直立体:

$$ \int_a^b f(x)\mathrm{d}x
\qquad
\int_a^b f(x)\,\mathrm{d}x$$

∫ a b f ( x ) d x ∫ a b f ( x )   d x \int_a^b f(x)\mathrm{d}x \qquad \int_a^b f(x)\,\mathrm{d}x abf(x)dxabf(x)dx

$$\begin{aligned}
\int\int f(x)g(y)
\,\mathrm{d} x\,\mathrm{d} y \\
\int\!\!\!\int
f(x)g(y) \,\mathrm{d} x \,\mathrm{d} y \\
\iint f(x)g(y) \,\mathrm{d} x \,\mathrm{d} y \\
\oint\quad \iint\quad \iiint\quad 
\end{aligned}$$

∫ ∫ f ( x ) g ( y )   d x   d y ∫  ⁣ ⁣ ⁣ ∫ f ( x ) g ( y )   d x   d y ∬ f ( x ) g ( y )   d x   d y ∮ ∬ ∭ \begin{aligned} \int\int f(x)g(y) \,\mathrm{d} x\,\mathrm{d} y \\ \int\!\!\!\int f(x)g(y) \,\mathrm{d} x \,\mathrm{d} y \\ \iint f(x)g(y) \,\mathrm{d} x \,\mathrm{d} y \\ \oint\quad \iint\quad \iiint\quad \end{aligned} f(x)g(y)dxdyf(x)g(y)dxdyf(x)g(y)dxdy

kaTeX似乎不支持\idotsint命令


数学符号的字体控制

字体

$\mathcal{R} \quad \mathfrak{R} \quad \mathbb{R}$
$$\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu}$$
$\mathfrak{su}(2)$ and $\mathfrak{so}(3)$ Lie algebra

R R R \mathcal{R} \quad \mathfrak{R} \quad \mathbb{R} RRR
L = − 1 4 F μ ν F μ ν \mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} L=41FμνFμν
s u ( 2 ) \mathfrak{su}(2) su(2) and s o ( 3 ) \mathfrak{so}(3) so(3) Lie algebra

加粗的数学符号

$\mu, M \qquad \boldsymbol{\mu}, \boldsymbol{M}$

μ , M μ , M \mu, M \qquad \boldsymbol{\mu}, \boldsymbol{M} μ,Mμ,M

数学符号的尺寸

$$
r = \frac
{\sum_{i=1}^n (x_i- x)(y_i- y)}
{\displaystyle \left[
\sum_{i=1}^n (x_i-x)^2
\sum_{i=1}^n (y_i-y)^2
\right]^{1/2} }
$$

r = ∑ i = 1 n ( x i − x ) ( y i − y ) [ ∑ i = 1 n ( x i − x ) 2 ∑ i = 1 n ( y i − y ) 2 ] 1 / 2 r = \frac {\sum_{i=1}^n (x_i- x)(y_i- y)} {\displaystyle \left[ \sum_{i=1}^n (x_i-x)^2 \sum_{i=1}^n (y_i-y)^2 \right]^{1/2} } r=[i=1n(xix)2i=1n(yiy)2]1/2i=1n(xix)(yiy)


其他

证明(因为,所以)

$$\because a \ge b \\ b \ge c \\ \therefore a \ge c$$

∵ a ≥ b b ≥ c ∴ a ≥ c \because a \ge b \\ b \ge c \\ \therefore a \ge c abbcac

如果使用aligned环境,排版效果会好一些

$$\begin{aligned}
\because a \ge b \\ b \ge c \\ \therefore a \ge c
\end{aligned}$$

∵ a ≥ b b ≥ c ∴ a ≥ c \begin{aligned} \because a \ge b \\ b \ge c \\ \therefore a \ge c \end{aligned} abbcac


Logo

腾讯云面向开发者汇聚海量精品云计算使用和开发经验,营造开放的云计算技术生态圈。

更多推荐