377045aadd90920344d96f478967a1c4.jpeg

源 |量子位

做计算机视觉,离不开CNN。

可是,卷积、池化、Softmax……究竟长啥样,是怎样相互连接在一起的?

对着代码凭空想象,多少让人有点头皮微凉。于是,有人干脆用Unity给它完整3D可视化了出来。

2d1211ea5376df2e4630614ffabb1ae9.gif

还不光是有个架子,训练过程也都呈现得明明白白。

比如随着epoch(迭代次数)的变化,训练过程中各层出现的实时变化。

eb8f5265f03d5eea5e2dcf717903da1b.gif b5eaa1c32644f2924d53b608f4d3226c.gif

为了能更清楚地展示网络细节,用户还可以在其中自由地折叠、扩展每个层。

比如将特征图在线性布局和网格布局之间转换。

11df2adf58fad6b0f8f672f1f7269a4b.gif

折叠卷积层的特征图输出。

ab8a775a8c9dab02ac3870a74d49f871.gif

对全连接层进行边绑定(edge bunding)等等。

1a7fc7d6ee21910a0b25bfa967f4cc64.gif

这样的可视化图像,可以通过加载TensorFlow的检查点来构建。

6881fe7d21c66e9e9e3b3353c8488aa4.png

也可以在Unity编辑器中设计。

0f59fa406f68ce9abf2a32b7a1bedec9.png

是不是有点鹅妹子嘤那感觉了?

最近,这个项目又在社交媒体上火了起来。

09a4db377212e8c28a934e1c8b71af0a.png

网友们纷纷表示:

“要是能在训练的时候看到这个过程,再长时间我也能忍啊。”

“求开源。”

381a6abd6e26dba02402a5a474bb4b04.png

该项目的作者,是一位来自维也纳的3D特效师。

据他介绍,之所以创建这样一个CNN可视化工具,是因为他自己初学神经网络时,经常觉得很难理解卷积层之间是如何相互连接,又如何与不同类型的层连接的。

而该工具的主要功能包括,卷积、最大池化和完全连接层的可视化表示,以及各种能实现更清晰可视化的简化机制等等。

总而言之,就是想让初学者通过最直观的方式,来get到CNN的重点。

如何用Unity搞出一个3D网络

在正式上手Unity前,作者先在Houdini软件中,搭建了一个可视化的3D网络原型。

fbf656a45ea96999bf239894348e01b9.png

也就是说,先给Unity版3D网络提供一个搭建思路,提前准备好实现展示卷积计算的方法、特征图的形状、边绑定的效果等问题。

它的节点编辑器长这样:

692a0480618cb1ff8869f993a2ae01c1.png

然后,就可以在Unity上搭建3D神经网络了。

首先,需要预设好神经网络的“形状”。

由于之前并没有用过Unity,作者先学习了着色器和过程式几何相关的知识。

这里面,作者发现了一些局限性,他采用的是Unity为着色器开发的语言Shaderlab,这个语言无法使用着色变化,只有对语义进行预定义的变量,才能让它在顶点、几何和像素着色器之间传递。

而且,它无法任意分配顶点属性,只有位置、颜色、UV等预定义属性。(可能这也是3D网络无法实时改变颜色的原因之一)

bcb81614fb138a367938b098447aac98.png

在研究了一些实例化(instancing)相关的概念后,作者计划采用几何着色器的方法生成神经网络的连线。其中起点和终点被传递到顶点着色器,并直接转发到几何着色器。

这些线,最多可以由120个顶点组成,因为Unity允许的几何着色器能创建的变量的标量浮点数为1024。

设计后的网络形状,大致长这样:

2cbd90b2a2b08b49d8c752f93a4a4a6a.png

然后,就是从模型的TensorFlow代码中,生成对应的3D神经网络图像。

其中,Tensorflow-native.ckpt格式的文件,需要存储重构模型图所需的数据、二进制的权重读取和激活值,以及特定层的名字。

以Cifar10-greyscale数据集为例,需要编写一个检查点(checkpoint)文件,以及设置随即初始化的权重。

91c105213782e393941cc15ff4e9d769.png

在那之后,需要加载这些检查点文件、启动TensorFlow会话,输入训练示例,以便查询每一层的激活函数。

然后编写一个json文件,存储每一层的形状、名称、权重和激活函数,便于读取。然后使用权重值,将颜色数据分配给各层的Unity Mesh。

c6e871d059b62f1e77f62665a8dc1e0e.png

最终搞出来的效果,还是不错的:

084bcb6330a67477535feead7ffbfa3f.gif

作者还录了个开发视频,在文末可以找到地址。

相关研究还不少

事实上,此前已经有不少学者,进行过神经网络可视化的研究。

例如,去年5月,一位中国博士就可视化了卷积神经网络,将每一层的变化都展示得非常清楚,只需要点击对应的神经元,就能看见它的“操作”。

ae74314f9aaa13e75538aa27a1651b94.gif

这是用TensorFlow.js加载的一个10层预训练模型,相当于在浏览器上就能跑CNN模型,也可以实时交互,显示神经元的变化。

不过,这还是个2D的项目。

目前,也已经有人像上面那个神经网络模型一样,做出了3D的可视化神经网络:

e5bf506a3d6a8eb407ad30f716d51344.gif

这个项目,同样用到了边绑定、光线追踪等技术,与特征提取、微调和归一化相结合,将神经网络可视化。

这项项目希望能借由这些技术,来估计神经网络中不同部分的重要性。

为此,作者将神经网络的每一部分都用不同的颜色来表示,根据节点和节点在网络中的重要性,来预测它们之间的关联性。

6bf4bfa5e40b63933c94a198d459e498.png

大致的处理过程是这样的:

43086034cf5022620a252cf62459e57e.png

如果对于这类3D神经网络可视化感兴趣,可以在文末找到对应的开源项目地址。

作者介绍

b51fcb90fd0174059b379d3545fe7b53.png

Stefan Sietzen,现居维也纳,此前曾是个3D视觉方向的自由职业者。

目前,他在维也纳工业大学读硕,对视觉计算(visual computing)非常感兴趣,这个3D神经网络,就是他在硕士期间做的项目之一。

开发过程:
https://vimeo.com/stefsietz

已开源的3D神经网络项目:
https://github.com/julrog/nn_vis

5770641fa677302418ec3eec1aadb874.jpeg后台回复关键词【入群

加入卖萌屋NLP、CV、搜推广与求职讨论群

3ba84522e60c12300b4d77c1c9ca28af.gif 860e213bcdd1120514f741826e6bda84.png

[1]https://www.reddit.com/r/MachineLearning/comments/leq2kf/d_convolution_neural_network_visualization_made/
[2] https://mp.weixin.qq.com/s/tmx59J75wuRii4RuOT8TTg
[3] https://vimeo.com/stefsietz
[4] http://portfolio.stefansietzen.at/
[5] http://visuality.at/vis2/detail.html
Logo

腾讯云面向开发者汇聚海量精品云计算使用和开发经验,营造开放的云计算技术生态圈。

更多推荐