【深度学习】tensorflow 卷积神经网络 实现手写数字识别
激活函数:tf.nn.relu(features, name=None)features:卷积后加上偏置的结果return:结果卷积层:tf.nn.conv2d(input, filter, strides=, padding=, name=None)计算给定4-Dinput和filter张量的2维卷积input:给定的输入张量,具有[batch,heigth,width,chan...
激活函数:
tf.nn.relu(features, name=None)
features:卷积后加上偏置的结果
return:结果
卷积层:
tf.nn.conv2d(input, filter, strides=, padding=, name=None)
计算给定4-D
input和filter张量的2维卷积
input:给定的输入张量,具有[batch,heigth,width,channel],类型为float32,64
**filter:**指定过滤器的大小,[filter_height, filter_width,
in_channels, out_channels]
strides: strides = [1, stride, stride, 1],步长
padding:“SAME”, “VALID”,使用的填充算法的类型,
使用“SAME”。其中”VALID”表示滑动超出部分舍弃,
**“SAME”**表示填充,使得变化后height,width一样大
池化:
tf.nn.max_pool(value, ksize=, strides=, padding=,name=None)
输入上执行最大池数
value: 4-D Tensor形状[batch, height, width, channels]
**ksize:**池化窗口大小,[1, ksize, ksize, 1]
**strides:**步长大小,[1,strides,strides,1]
padding:“SAME”, “VALID”,使用的填充算法的类型,
使用“SAME”
def weight_variables(shape):
w = tf.Variable(tf.random_normal(shape=shape, mean=0.0, stddev=1.0))
return w
# 定义一个初始化偏置的函数
def bias_variables(shape):
b = tf.Variable(tf.constant(0.0, shape=shape))
return b
def model():
"""
自定义的卷积模型
:return:
"""
# 1、准备数据的占位符 x [None, 784] y_true [None, 10]
with tf.variable_scope("data"):
x = tf.placeholder(tf.float32, [None, 784])
y_true = tf.placeholder(tf.int32, [None, 10])
# 2、一卷积层 卷积: 5*5*1,32个,strides=1 激活: tf.nn.relu 池化
with tf.variable_scope("conv1"):
# 随机初始化权重, 偏置[32]
w_conv1 = weight_variables([5, 5, 1, 32])
b_conv1 = bias_variables([32])
# 对x进行形状的改变[None, 784] [None, 28, 28, 1]
x_reshape = tf.reshape(x, [-1, 28, 28, 1])
# [None, 28, 28, 1]-----> [None, 28, 28, 32]
x_relu1 = tf.nn.relu(tf.nn.conv2d(x_reshape, w_conv1, strides=[1, 1, 1, 1], padding="SAME") + b_conv1)
# 池化 2*2 ,strides2 [None, 28, 28, 32]---->[None, 14, 14, 32]
x_pool1 = tf.nn.max_pool(x_relu1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME")
# 3、二卷积层卷积: 5*5*32,64个filter,strides=1 激活: tf.nn.relu 池化:
with tf.variable_scope("conv2"):
# 随机初始化权重, 权重:[5, 5, 32, 64] 偏置[64]
w_conv2 = weight_variables([5, 5, 32, 64])
b_conv2 = bias_variables([64])
# 卷积,激活,池化计算
# [None, 14, 14, 32]-----> [None, 14, 14, 64]
x_relu2 = tf.nn.relu(tf.nn.conv2d(x_pool1, w_conv2, strides=[1, 1, 1, 1], padding="SAME") + b_conv2)
# 池化 2*2, strides 2, [None, 14, 14, 64]---->[None, 7, 7, 64]
x_pool2 = tf.nn.max_pool(x_relu2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME")
# 4、全连接层 [None, 7, 7, 64]--->[None, 7*7*64]*[7*7*64, 10]+ [10] =[None, 10]
with tf.variable_scope("conv2"):
# 随机初始化权重和偏置
w_fc = weight_variables([7 * 7 * 64, 10])
b_fc = bias_variables([10])
# 修改形状 [None, 7, 7, 64] --->None, 7*7*64]
x_fc_reshape = tf.reshape(x_pool2, [-1, 7 * 7 * 64])
# 进行矩阵运算得出每个样本的10个结果
y_predict = tf.matmul(x_fc_reshape, w_fc) + b_fc
return x, y_true, y_predict
def conv_fc():
# 获取真实的数据
mnist = input_data.read_data_sets("./data/mnist/input_data/", one_hot=True)
# 定义模型,得出输出
x, y_true, y_predict = model()
# 进行交叉熵损失计算
# 3、求出所有样本的损失,然后求平均值
with tf.variable_scope("soft_cross"):
# 求平均交叉熵损失
loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_true, logits=y_predict))
# 4、梯度下降求出损失
with tf.variable_scope("optimizer"):
train_op = tf.train.GradientDescentOptimizer(0.0001).minimize(loss)
# 5、计算准确率
with tf.variable_scope("acc"):
equal_list = tf.equal(tf.argmax(y_true, 1), tf.argmax(y_predict, 1))
# equal_list None个样本 [1, 0, 1, 0, 1, 1,..........]
accuracy = tf.reduce_mean(tf.cast(equal_list, tf.float32))
# 定义一个初始化变量的op
init_op = tf.global_variables_initializer()
# 开启回话运行
with tf.Session() as sess:
sess.run(init_op)
# 循环去训练
for i in range(1000):
# 取出真实存在的特征值和目标值
mnist_x, mnist_y = mnist.train.next_batch(50)
# 运行train_op训练
sess.run(train_op, feed_dict={x: mnist_x, y_true: mnist_y})
print("训练第%d步,准确率为:%f" % (i, sess.run(accuracy, feed_dict={x: mnist_x, y_true: mnist_y})))
return None
if __name__ == "__main__":
conv_fc()
更多推荐
所有评论(0)