拉格朗日中值定理得以下两个推论:

推论1

f ( x ) f(x) f(x) ( a , b ) (a,b) (a,b)内可导, f ′ ( x ) ≡ 0 f'(x)\equiv0 f(x)0,则 f ( x ) f(x) f(x) ( a , b ) (a,b) (a,b)内为常数。

证明:对于 ( a , b ) (a,b) (a,b)内的任意两点 x 1 < x 2 x_1<x_2 x1<x2 ∃ ξ ∈ ( x 1 , x 2 ) \exist \xi\in(x_1,x_2) ξ(x1,x2)使得 f ( x 1 ) − f ( x 2 ) = f ′ ( ξ ) ( x 1 − x 2 ) = 0 f(x_1)-f(x_2)=f'(\xi)(x_1-x_2)=0 f(x1)f(x2)=f(ξ)(x1x2)=0,所以 f ( x ) f(x) f(x) ( a , b ) (a,b) (a,b)内为常数。

推论2

f ′ ( x ) = g ′ ( x ) f'(x)=g'(x) f(x)=g(x),则 f ( x ) = g ( x ) + C f(x)=g(x)+C f(x)=g(x)+C

证明:令 h ( x ) = f ( x ) − g ( x ) h(x)=f(x)-g(x) h(x)=f(x)g(x),则 h ′ ( x ) = f ′ ( x ) − g ′ ( x ) = 0 h'(x)=f'(x)-g'(x)=0 h(x)=f(x)g(x)=0,由推论1得 h ( x ) h(x) h(x)为常数,得证 f ( x ) = g ( x ) + C f(x)=g(x)+C f(x)=g(x)+C


会用到这些推论的问题一般是证明含有一个或若干个函数的恒等式成立。


例1

证明: ∀ x ∈ [ − 1 , 1 ] \forall x\in[-1,1] x[1,1] arcsin ⁡ x + arccos ⁡ x = π 2 \arcsin x+\arccos x=\dfrac{\pi}{2} arcsinx+arccosx=2π成立。

证:
\qquad f ( x ) = arcsin ⁡ x + arccos ⁡ x f(x)=\arcsin x+\arccos x f(x)=arcsinx+arccosx g ( x ) = π 2 g(x)=\dfrac{\pi}{2} g(x)=2π

f ′ ( x ) = 1 1 − x 2 − 1 1 − x 2 = 0 \qquad f'(x)=\dfrac{1}{\sqrt{1-x^2}}-\dfrac{1}{\sqrt{1-x^2}}=0 f(x)=1x2 11x2 1=0 g ′ ( x ) = 0 g'(x)=0 g(x)=0

\qquad f ( x ) = g ( x ) + C f(x)=g(x)+C f(x)=g(x)+C

\qquad 代入 x = 0 x=0 x=0 f ( 0 ) = 0 + arccos ⁡ 0 = π 2 f(0)=0+\arccos 0=\dfrac{\pi}{2} f(0)=0+arccos0=2π g ( 0 ) = π 2 g(0)=\dfrac{\pi}{2} g(0)=2π

\qquad 所以 C = 0 C=0 C=0,即 f ( x ) = g ( x ) f(x)=g(x) f(x)=g(x),得证 arcsin ⁡ x + arccos ⁡ x = π 2 \arcsin x+\arccos x=\dfrac{\pi}{2} arcsinx+arccosx=2π


例2

证明: ∀ x ∈ R \forall x\in R xR arctan ⁡ x + arccot  x = π 2 \arctan x+\text{arccot }x=\dfrac{\pi}{2} arctanx+arccot x=2π成立。

证:
\qquad f ( x ) = arctan ⁡ x + arccot  x f(x)=\arctan x+\text{arccot }x f(x)=arctanx+arccot x g ( x ) = π 2 g(x)=\dfrac{\pi}{2} g(x)=2π

f ′ ( x ) = 1 1 + x 2 − 1 1 + x 2 = 0 \qquad f'(x)=\dfrac{1}{1+x^2}-\dfrac{1}{1+x^2}=0 f(x)=1+x211+x21=0 g ′ ( x ) = 0 g'(x)=0 g(x)=0

\qquad f ( x ) = g ( x ) + C f(x)=g(x)+C f(x)=g(x)+C

\qquad 代入 x = 0 x=0 x=0 f ( 0 ) = 0 + arccot  x = π 2 f(0)=0+\text{arccot }x=\dfrac{\pi}{2} f(0)=0+arccot x=2π g ( 0 ) = π 2 g(0)=\dfrac{\pi}{2} g(0)=2π

\qquad 所以 C = 0 C=0 C=0,即 f ( x ) = g ( x ) f(x)=g(x) f(x)=g(x),得证 arctan ⁡ x + arccot  x = π 2 \arctan x+\text{arccot }x=\dfrac{\pi}{2} arctanx+arccot x=2π


总结

构造函数 f ( x ) , g ( x ) f(x),g(x) f(x),g(x),证明 f ′ ( x ) = g ′ ( x ) , f ( x ) = g ( x ) + C f'(x)=g'(x),f(x)=g(x)+C f(x)=g(x),f(x)=g(x)+C,代入特殊值求 C C C的值,即可解决此类问题。

Logo

腾讯云面向开发者汇聚海量精品云计算使用和开发经验,营造开放的云计算技术生态圈。

更多推荐