思路方案

思路

需要将非结构化数据→转为结构化→再完成搜索。将非结构化数据,转化为结构化的多维向量,用这些向量标识实体和实体间的关系。再计算向量之间距离,通常情况下,距离越近、相似度越高,召回相似度最高的TOP结果,完成检索。
在这里插入图片描述

方案

给定一组查询图片和数据库图片。我们对数据库图片执行以图搜图操作,在image embeddings(将图片数据转换为固定大小的特征表示——矢量)上获取前k个最相似的数据库中的图片。

将采用以下两种方法执行以图搜图功能:

Milvus 向量数据库

Milvus 在非结构化数据处理中的应用非常强大。Milvus 向量相似度检索引擎可以兼容各种深度学习平台,搜索十亿向量仅毫秒响应。

ElasticSearch 向量数据库(resnet50模型)

方案一(Milvus1.0)

功能介绍

以图搜图,涉及两大功能:1、提取图像特征向量。2、相似向量检索。
通过计算特征向量来分析非结构化数据。使用ResNet-50进行特征提取,构建反向图像搜索系统。

环境搭建

yaml文件配置

version: 0.5

cluster:
  enable: false
  role: rw

general:
  timezone: UTC+8
  meta_uri: sqlite://:@:/

network:
  bind.address: 0.0.0.0
  bind.port: 19530
  http.enable: true
  http.port: 19121 
storage:
  path: /var/lib/milvus
  auto_flush_interval: 1 
wal:
  enable: true
  recovery_error_ignore: false
  buffer_size: 256MB
  path: /var/lib/milvus/wal 
cache:
  cache_size: 256MB
  insert_buffer_size: 256MB
  preload_collection: 
gpu:
  enable: false
  cache_size: 256MB
  gpu_search_threshold: 1000
  search_devices:
    - gpu0
  build_index_devices:
    - gpu0
fpga:
   enable: false
   search_devices:
     - fpga0
logs:
  level: debug
  trace.enable: true
  path: /var/lib/milvus/logs
  max_log_file_size: 1073741824
  log_rotate_num: 0
  log_to_stdout: false
  log_to_file: true
metric:
  enable: false
  address: 127.0.0.1
  port: 9091

docker部署

docker run -d --name milvus_1 \
-p 19530:19530 \
-p 19121:19121 \
-v /root/milvus/db:/var/lib/milvus/db \
-v /root/milvus/conf:/var/lib/milvus/conf \
-v /root/milvus/logs:/var/lib/milvus/logs \
-v /root/milvus/wal:/var/lib/milvus/wal \
milvusdb/milvus:1.0.0-cpu-d030521-1ea92e
2)

docker run -d --name image_search \
-v /root/milvus/pic:/tmp/pic1 \
-p 35000:5000 \
-e "DATA_PATH=/tmp/images-data" \
-e "MILVUS_HOST=你的服务器ip地址" \
milvusbootcamp/pic-search-webserver:1.0
3)

docker run --name milvus_image_search_web -d --rm -p 8001:80 \
-e API_URL=http://你的服务器ip地址:35000 \
milvusbootcamp/pic-search-webclient:1.0 

效果图

图搜图效果

测试

原图进行验证搜索

原图验证搜索

截图进行验证搜索

截图进行验证搜索

不相关图片进行验证

不相关图片进行验证

升级方案(Milvus2.X)

问题

在调用模型时无法连接至hugging face 无法将图片转为向量

方案二(ElasticSearch + ResNet-50模型)

功能介绍

以图搜图,涉及两大功能:1、提取图像特征向量。2、相似向量检索。
第一个功能通过pytorch下载保存resnet50模型并在java端借助djl调用实现,第二个功能通过elasticsearch7.12.2的dense_vector、cosineSimilarity实现。

环境部署(通过编写pytorch模型并在java端借助djl调用实现)

提取图像特征下载模型到本地(resnet50模型)

import torch
import torch.nn as nn
import torchvision.models as models
 
class ImageFeatureExtractor(nn.Module):
    def __init__(self):
        super(ImageFeatureExtractor, self).__init__()
        self.resnet = models.resnet50(pretrained=True)
        #最终输出维度1024的向量,下文elastic search要设置dims为1024
        self.resnet.fc = nn.Linear(2048, 1024)
 
    def forward(self, x):
        x = self.resnet(x)
        return x
 
if __name__ == '__main__':
    model = ImageFeatureExtractor()
    model.eval()
    #根据模型随便创建一个输入
    input = torch.rand([1, 3, 224, 224])
    output = model(input)
    #以这种方式保存
    script = torch.jit.trace(model, input)
    script.save("model.pt")

保存好的model.pt文件放入java项目的resources中。

部署elasticsearch kibana

es版本:7.6.2
docker部署:
docker run -p 9200:9200 -p 9300:9300 \
--privileged=true --name es7.6.2 \
-e "discovery.type=single-node" \
-e ES_JAVA_OPTS="-Xms512m -Xmx1024m" \
-e "http.max_content_length=500mb" \
-v /root/mydata/plugins:/usr/share/elasticsearch/plugins \
-v /root/mydata/data:/usr/share/elasticsearch/data \
-v /root/mydata/logs:/usr/share/elasticsearch/logs \
-d elasticsearch:7.6.2

docker run -d \
--name kibana \
--restart=always \
-p 5601:5601 \
-v /data/kibana/config/kibana.yml:/usr/share/kibana/config/kibana.yml \
kibana:7.6.2

创建索引库

PUT /isi
{
  "mappings": {
    "properties": {
      "vector": {
        "type": "dense_vector",
        "dims": 1024
      },
      "url" : {
        "type" : "keyword"
      },
      "user_id": {
          "type": "keyword"
      }
    }
  }
}

相似向量上传、检索

创建调用resnet模型 转化格式

public class Test {

  private static final String INDEX = "isi";
  private static final int IMAGE_SIZE = 224;
  private static Model model; //模型
  private static Predictor<Image, float[]> predictor; 
  //predictor.predict(input)相当于python中model(input)
  static {
    try {
      model = Model.newInstance("model");
      //这里的model.pt是上面代码展示的那种方式保存的
      model.load(Test.class.getClassLoader().getResourceAsStream("model.pt"));
      Transform resize = new Resize(IMAGE_SIZE);
      Transform toTensor = new ToTensor();
      Transform normalize = new Normalize(new float[]{0.485f, 0.456f, 0.406f}, new float[]{0.229f, 0.224f, 0.225f});
      //Translator处理输入Image转为tensor、输出转为float[]
      Translator<Image, float[]> translator = new Translator<Image, float[]>() {
        @Override
        public NDList processInput(TranslatorContext ctx, Image input) throws Exception {
          NDManager ndManager = ctx.getNDManager();
          System.out.println("input: " + input.getWidth() + ", " + input.getHeight());
          NDArray transform = normalize.transform(toTensor.transform(resize.transform(input.toNDArray(ndManager))));
          System.out.println(transform.getShape());
          NDList list = new NDList();
          list.add(transform);
          return list;
        }
        @Override
        public float[] processOutput(TranslatorContext ctx, NDList ndList) throws Exception {
          return ndList.get(0).toFloatArray();
        }
      };
      predictor = new Predictor<>(model, translator, Device.cpu(), true);
    } catch (Exception e) {
      e.printStackTrace();
    }
  }
}

批量上传图片到es

public static void upload() throws Exception {
        RestHighLevelClient client = new RestHighLevelClient(
                RestClient.builder(new HttpHost("192.168.110.132", 9200, "http")));
        //批量上传请求
        File file = new File("E:\\javacode\\javaes\\src\\main\\resources\\test");
        File[] files = file.listFiles();
        if (files == null) return;
        int batchSize = 1000;
        for (int i = 0; i < files.length; i += batchSize) {
            BulkRequest bulkRequest = new BulkRequest(INDEX);
            for (int j = i; j < i + batchSize && j < files.length; j++) {
                File listFile = files[j];
                float[] vector = predictor.predict(ImageFactory.getInstance().fromInputStream(new FileInputStream(listFile)));
                Map<String, Object> jsonMap = new HashMap<>();
                jsonMap.put("url", listFile.getAbsolutePath());
                jsonMap.put("vector", vector);
                jsonMap.put("user_id", "user123");
                IndexRequest request = new IndexRequest(INDEX).source(jsonMap, XContentType.JSON);
                bulkRequest.add(request);
            }
            client.bulk(bulkRequest, RequestOptions.DEFAULT);
            /*for (File listFile : file.listFiles()) {
            float[] vector = predictor.predict(ImageFactory.getInstance().fromInputStream(Test2.class.getClassLoader().getResourceAsStream("test/" + listFile.getName())));
            // 构建文档
            Map<String, Object> jsonMap = new HashMap<>();
            jsonMap.put("url", listFile.getAbsolutePath());
            jsonMap.put("vector", vector);
            jsonMap.put("user_id", "user123");
            IndexRequest request = new IndexRequest(INDEX).source(jsonMap, XContentType.JSON);
            bulkRequest.add(request);*/
        }

        client.close();
    }

搜索(将图片转为向量与es文档库匹配)

public static List<SearchResult> search(InputStream input) throws Throwable {
        float[] vector = predictor.predict(ImageFactory.getInstance().fromInputStream(input));
        System.out.println(Arrays.toString(vector));

        //展示k个结果
        int k = 50;
        // 连接Elasticsearch服务器
        RestHighLevelClient client = new RestHighLevelClient(
                RestClient.builder(new HttpHost("192.168.110.132", 9200, "http")));

        SearchRequest searchRequest = new SearchRequest(INDEX);
        Script script = new Script(
                ScriptType.INLINE,
                "painless",
                "cosineSimilarity(params.queryVector, doc['vector'])",
                Collections.singletonMap("queryVector", vector));

        FunctionScoreQueryBuilder functionScoreQueryBuilder = QueryBuilders.functionScoreQuery(
                QueryBuilders.matchAllQuery(),
                ScoreFunctionBuilders.scriptFunction(script));

        SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
        searchSourceBuilder.query(functionScoreQueryBuilder)
                .fetchSource(null, "vector") //不返回vector字段,没用还耗时
                .size(k);

        searchRequest.source(searchSourceBuilder);

        SearchResponse searchResponse = client.search(searchRequest, RequestOptions.DEFAULT);

        SearchHits hits = searchResponse.getHits();

        List<SearchResult> list = new ArrayList<>();
        for (SearchHit hit : hits) {
            // 处理搜索结果
            System.out.println(hit.toString());
            SearchResult result = new SearchResult((String) hit.getSourceAsMap().get("url"), hit.getScore());
            list.add(result);
        }

        client.close();
        return list;
    }

效果图

效果图

测试

原图进行验证搜索

原图进行验证搜索

截图进行验证搜索

截图进行验证搜索

不相关图片进行验证

不相关图片进行验证

Logo

腾讯云面向开发者汇聚海量精品云计算使用和开发经验,营造开放的云计算技术生态圈。

更多推荐