解决rt-thread上使用SPI+DMA
首先阐述下遇到的问题使用SPI读取icm20602数据,读取频率为1000hz,使用stm32f407主控,发现CPU占用率达到了70%,将此线程注释掉后CPU占用率掉到25%,看来这里要着重优化,便萌生了使用DMA的想法。使用SPI+DMA要进行的配置1.开启RTT设备驱动。点击自己的工程 ->RT-Thread Setting2.在board.hzhong3.在board.c文件里加入以
首先阐述下遇到的问题
使用SPI读取icm20602数据,读取频率为1000hz,使用stm32f407主控,发现CPU占用率达到了70%,且扰乱了线程的时序,将此线程注释掉后CPU占用率掉到25%,线程频率恢复正常,看来这里要着重优化,便萌生了使用DMA的想法。
2023.5.7更新:
- 当时CPU占用率高是因为错误设置了spi速率,不过即使如此,使用DMA还是大幅降低了CPU占用率。
- 经多次在stm32f4上跑RTT,使用SPI+DMA,有了更高效的实现方法,故优化文章。本次优化仅对官方drv_spi.c添加一句代码,即可在实现SPI+DMA的同时CPU零阻塞。
使用SPI+DMA要进行的配置
RTT部分
-
开启RTT设备驱动。点击自己的工程 ->RT-Thread Setting,开启SPI设备驱动。
-
在board.h中添加开启宏
开启后设备驱动会自动调用HAL库进行底层硬件的初始化默认配置,并将spi注册到设备容器。
HAL库部分
- 在board.c文件里加入以下函数,此函数被初始化SPI的HAL库调用以进行底层硬件初始化。
void HAL_SPI_MspInit(SPI_HandleTypeDef* hspi)
{
GPIO_InitTypeDef GPIO_InitStruct;
if(hspi->Instance == SPI2)
{
/* Peripheral clock enable */
__HAL_RCC_SPI2_CLK_ENABLE();
__HAL_RCC_GPIOB_CLK_ENABLE();
/**SPI2 GPIO Configuration,这里配置自己的
PB13 ------> SPI3_MISO
PB14 ------> SPI3_SCK
PB15 ------> SPI3_MOSI
*/
GPIO_InitStruct.Pin = GPIO_PIN_13| GPIO_PIN_14 | GPIO_PIN_15;
GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;
GPIO_InitStruct.Pull = GPIO_PULLUP;
GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
GPIO_InitStruct.Alternate = GPIO_AF5_SPI2;
HAL_GPIO_Init(GPIOB, &GPIO_InitStruct);
}
}
类似于stm32的中断函数一样,此函数在hal库中弱定义,用户定义则执行用户的函数。
- 使能HAL库-SPI,即可与RTT设备驱动对接
至此基础配置已完毕,接下来是用户配置,配置片选,并挂载到具体的SPI设备
这里给出我的配置源文件,作为参考1 :
(思路:在DMA传输时挂起当前线程等待信号量(这里需更改官方spi驱动,后文有具体说明),在SPI中断回调函数中释放信号量恢复线程)
/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2023-02-24 86188 the first version
*/
#include "head_rtthread.h"
#include "head_user.h"
SPI_HandleTypedef SPI_Handle;
/* 注册到spi设备总线的设备名(可任取,这里以总线+0 1 2命名直观,方便) */
#define ICM42688_SPI_DEVICE_NAME "spi10"
#define MS5611_SPI_DEVICE_NAME "spi11"
#define ICM20602_SPI_DEVICE_NAME "spi12"
#define FM25V05_SPI_DEVICE_NAME "spi20"
/* 数字序号对应的引脚可在drv_gpio.c中查看 */
#define ICM42688_SPI_DEVICE_CS 4 //PA4
#define MS5611_SPI_DEVICE_CS 40 //PC8
#define ICM20602_SPI_DEVICE_CS 46 //PC14
#define FM25V05_SPI_DEVICE_CS 28 //PB12
/* 传输完成回调,通知被阻塞的线程恢复执行 */
void HAL_SPI_RxCpltCallback(SPI_HandleTypeDef *hspi)
{
rt_sem_release(((struct stm32_spi *)hspi)->spi_bus.owner->user_data);
}
void HAL_SPI_TxCpltCallback(SPI_HandleTypeDef *hspi)
{
rt_sem_release(((struct stm32_spi *)hspi)->spi_bus.owner->user_data);
}
void HAL_SPI_TxRxCpltCallback(SPI_HandleTypeDef *hspi)
{
rt_sem_release(((struct stm32_spi *)hspi)->spi_bus.owner->user_data);
}
static int spi_device_init(void)
{
/*-------------------------------------------------------------------*
* attach device cs pin
*-------------------------------------------------------------------*/
/* cs_pin clock enable */
__GPIOA_CLK_ENABLE();
__GPIOB_CLK_ENABLE();
__GPIOC_CLK_ENABLE();
/* attach cs pin */
rt_hw_spi_device_attach("spi1", ICM42688_SPI_DEVICE_NAME, GPIOA, GPIO_PIN_4);
rt_hw_spi_device_attach("spi1", MS5611_SPI_DEVICE_NAME, GPIOC, GPIO_PIN_8);
rt_hw_spi_device_attach("spi1", ICM20602_SPI_DEVICE_NAME, GPIOC, GPIO_PIN_14);
rt_hw_spi_device_attach("spi2", FM25V05_SPI_DEVICE_NAME, GPIOB, GPIO_PIN_12);
/*-------------------------------------------------------------------*
* init specific spi device
*-------------------------------------------------------------------*/
/* SPI1_device*/
SPI_Handle.SPI1dev.ICM42688 = (struct rt_spi_device *)rt_device_find(ICM42688_SPI_DEVICE_NAME);
if (SPI_Handle.SPI1dev.ICM42688 == RT_NULL)
{
rt_kprintf("failed to create spi1_device:ICM42688!\r\n");
}
SPI_Handle.SPI1dev.MS5611 = (struct rt_spi_device *)rt_device_find(MS5611_SPI_DEVICE_NAME);
if (SPI_Handle.SPI1dev.MS5611 == RT_NULL)
{
rt_kprintf("failed to create spi1_device:MS5611!\r\n");
}
//SPI1dev_Handle.ICM20602 = (struct rt_spi_device *)rt_device_find(ICM20602_SPI_DEVICE_NAME);
/* SPI2_device*/
SPI_Handle.SPI2dev.FM25V05 = (struct rt_spi_device *)rt_device_find(FM25V05_SPI_DEVICE_NAME);
if (SPI_Handle.SPI2dev.FM25V05 == RT_NULL)
{
rt_kprintf("failed to create spi2_device:FM25V05!\r\n");
}
/* init spi */
struct rt_spi_configuration spi_cfg;
spi_cfg.data_width = 8;
spi_cfg.mode = RT_SPI_MASTER | RT_SPI_MODE_0 | RT_SPI_MSB;
spi_cfg.max_hz = 10000000; //10M,这里并不是10M,结果选最近的时钟源的2^n分频。官方驱动有点小bug,文章末尾会提到。
rt_spi_configure(SPI_Handle.SPI1dev.ICM42688, &spi_cfg);
rt_spi_configure(SPI_Handle.SPI1dev.MS5611, &spi_cfg);
//rt_spi_configure(SPI1dev_Handle.ICM20602, &spi_cfg);
rt_spi_configure(SPI_Handle.SPI2dev.FM25V05, &spi_cfg);
/* semaphore be used to relax CPU when SPI is working */
SPI_Handle.SPI1dev.sem = rt_sem_create("spidma_sem", 0, RT_IPC_FLAG_PRIO);
if (SPI_Handle.SPI1dev.sem == RT_NULL)
{
rt_kprintf("failed to create spidma_sem!\r\n");
}
SPI_Handle.SPI2dev.sem = rt_sem_create("spi2dma_sem", 0, RT_IPC_FLAG_PRIO);
if (SPI_Handle.SPI2dev.sem == RT_NULL)
{
rt_kprintf("failed to create spi2dma_sem!\r\n");
}
/* 同一总线,公用一个信号量 */
/* SPI1_bus semaphore*/
SPI_Handle.SPI1dev.ICM42688->user_data = (void *)SPI_Handle.SPI1dev.sem;
SPI_Handle.SPI1dev.MS5611->user_data = (void *)SPI_Handle.SPI1dev.sem;
/* SPI2_bus semaphore*/
SPI_Handle.SPI2dev.FM25V05->user_data = (void *)SPI_Handle.SPI2dev.sem;
SPI_Handle.RWBytes = rt_spi_transfer;
SPI_Handle.WthenWs = rt_spi_send_then_send;
SPI_Handle.WthenRs = rt_spi_send_then_recv;
return RT_EOK;
}
/* 导出到自动初始化 */
INIT_PREV_EXPORT(spi_device_init);
头文件:
/*
* Copyright (c) 2006-2021, RT-Thread Development Team
*
* SPDX-License-Identifier: Apache-2.0
*
* Change Logs:
* Date Author Notes
* 2023-02-24 86188 the first version
*/
#ifndef APPLICATIONS_HEADER_FILE_SPI_DRV_H_
#define APPLICATIONS_HEADER_FILE_SPI_DRV_H_
#include "drv_spi.h"
#include "head_rtthread.h"
typedef struct
{
struct rt_spi_device* ICM42688;
struct rt_spi_device* MS5611;
struct rt_spi_device* ICM20602;
rt_sem_t sem;
}SPI1dev_HandleTypedef;
typedef struct
{
struct rt_spi_device* FM25V05;
rt_sem_t sem;
}SPI2dev_HandleTypedef;
typedef struct
{
SPI1dev_HandleTypedef SPI1dev;
SPI2dev_HandleTypedef SPI2dev;
rt_size_t (*RWBytes)(struct rt_spi_device *device, const void *send_buf, void *recv_buf, rt_size_t length);
rt_err_t (*WthenRs)(struct rt_spi_device *device, const void *send_buf, rt_size_t send_length, void *recv_buf, rt_size_t recv_length);
rt_err_t (*WthenWs)(struct rt_spi_device *device, const void *send_buf1, rt_size_t send_length1, const void *send_buf2, rt_size_t send_length2);
}SPI_HandleTypedef;
extern SPI_HandleTypedef SPI_Handle;
#endif /* APPLICATIONS_HEADER_FILE_SPI_DRV_H_ */
配置完毕,开始使用
比如实现一个IMU的读写驱动函数:
static void Icm42688_R_reg(uint8_t addr, uint8_t *res, uint32_t num)
{
uint8_t dat;
dat = addr | ICM42688_SPI_R;
SPI_Handle.WthenRs(SPI_Handle.SPI1dev.ICM42688, &dat, 1, res, num);
}
static void Icm42688_W_reg(uint8_t addr, uint8_t val)
{
uint8_t dat[2];
dat[0] = addr | ICM42688_SPI_W;
dat[1] = val;
SPI_Handle.RWBytes(SPI_Handle.SPI1dev.ICM42688, dat, RT_NULL, 2);
}
解决RTT的SPI设备驱动(drv_spi.c)缺陷(使用DMA),仅新增一行代码!
上文源文件末尾引用了3个RTT-SPI设备驱动中的数据传输函数:
SPI_Handle.RWBytes = rt_spi_transfer;
SPI_Handle.WthenWs = rt_spi_send_then_send;
SPI_Handle.WthenRs = rt_spi_send_then_recv;
这3个数据传输函数最终都会调用 spixfer 来进行spi数据读写,就是这个:
static rt_uint32_t spixfer(struct rt_spi_device *device, struct rt_spi_message *message)
{
HAL_StatusTypeDef state;
rt_size_t message_length, already_send_length;
rt_uint16_t send_length;
rt_uint8_t *recv_buf;
const rt_uint8_t *send_buf;
RT_ASSERT(device != RT_NULL);
RT_ASSERT(device->bus != RT_NULL);
RT_ASSERT(device->bus->parent.user_data != RT_NULL);
RT_ASSERT(message != RT_NULL);
struct stm32_spi *spi_drv = rt_container_of(device->bus, struct stm32_spi, spi_bus);
SPI_HandleTypeDef *spi_handle = &spi_drv->handle;
struct stm32_hw_spi_cs *cs = device->parent.user_data;
if (message->cs_take)
{
HAL_GPIO_WritePin(cs->GPIOx, cs->GPIO_Pin, GPIO_PIN_RESET);
}
LOG_D("%s transfer prepare and start", spi_drv->config->bus_name);
LOG_D("%s sendbuf: %X, recvbuf: %X, length: %d",
spi_drv->config->bus_name,
(uint32_t)message->send_buf,
(uint32_t)message->recv_buf, message->length);
message_length = message->length;
recv_buf = message->recv_buf;
send_buf = message->send_buf;
while (message_length)
{
/* the HAL library use uint16 to save the data length */
if (message_length > 65535)
{
send_length = 65535;
message_length = message_length - 65535;
}
else
{
send_length = message_length;
message_length = 0;
}
/* calculate the start address */
already_send_length = message->length - send_length - message_length;
send_buf = (rt_uint8_t *)message->send_buf + already_send_length;
recv_buf = (rt_uint8_t *)message->recv_buf + already_send_length;
/* start once data exchange in DMA mode */
if (message->send_buf && message->recv_buf)
{
if ((spi_drv->spi_dma_flag & SPI_USING_TX_DMA_FLAG) && (spi_drv->spi_dma_flag & SPI_USING_RX_DMA_FLAG))
{
state = HAL_SPI_TransmitReceive_DMA(spi_handle, (uint8_t *)send_buf, (uint8_t *)recv_buf, send_length);
}
else
{
state = HAL_SPI_TransmitReceive(spi_handle, (uint8_t *)send_buf, (uint8_t *)recv_buf, send_length, 1000);
}
}
else if (message->send_buf)
{
if (spi_drv->spi_dma_flag & SPI_USING_TX_DMA_FLAG)
{
state = HAL_SPI_Transmit_DMA(spi_handle, (uint8_t *)send_buf, send_length);
}
else
{
state = HAL_SPI_Transmit(spi_handle, (uint8_t *)send_buf, send_length, 1000);
}
}
else
{
memset((uint8_t *)recv_buf, 0xff, send_length);
if (spi_drv->spi_dma_flag & SPI_USING_RX_DMA_FLAG)
{
state = HAL_SPI_Receive_DMA(spi_handle, (uint8_t *)recv_buf, send_length);
}
else
{
state = HAL_SPI_Receive(spi_handle, (uint8_t *)recv_buf, send_length, 1000);
}
}
if (state != HAL_OK)
{
LOG_I("spi transfer error : %d", state);
message->length = 0;
spi_handle->State = HAL_SPI_STATE_READY;
}
else
{
LOG_D("%s transfer done", spi_drv->config->bus_name);
}
/* For simplicity reasons, this example is just waiting till the end of the
transfer, but application may perform other tasks while transfer operation
is ongoing. */
while (HAL_SPI_GetState(spi_handle) != HAL_SPI_STATE_READY);
}
if (message->cs_release)
{
HAL_GPIO_WritePin(cs->GPIOx, cs->GPIO_Pin, GPIO_PIN_SET);
}
return message->length;
}
/* For simplicity reasons, this example is just waiting till the end of the
transfer, but application may perform other tasks while transfer operation
is ongoing. */
while (HAL_SPI_GetState(spi_handle) != HAL_SPI_STATE_READY);
使用DMA时也是在这里死等,这就失去了我们使用DMA的初衷,现在优化这段代码,在DMA传输数据时释放CPU去干其它事。
更改刚刚提到的代码段为如下代码,这里的方法依然是用信号量释放CPU
/* For simplicity reasons, this example is just waiting till the end of the
transfer, but application may perform other tasks while transfer operation
is ongoing. */
while (HAL_SPI_GetState(spi_handle) != HAL_SPI_STATE_READY)
{
rt_sem_take((rt_sem_t)(device->user_data), RT_WAITING_FOREVER);
}
完成,可以愉快的使用spi+dma干活了
CPU,DMA搭配干活不累^ _ ^
最后附上一张导图
旧导图:
2023.5.7更新(文章已更新,留旧导图做对比):
第一次写这么长的文章,有不当之处还请批评指正~
官方驱动取的是APB2时钟频率进行的分频,配置所有SPI都用的这个频率,SPI1挂在APB2总线上,配置上没问题,但SPI2挂在APB1总线上,APB1总线的频率是APB2的两倍,故在SPI2设置时钟频率时会造成 实际频率值 是 设置频率值 的二分之一 ↩︎
更多推荐
所有评论(0)